
⛄一、CNN-BiLSTM-Attention简介
1 卷积神经网络CNN简介
1.1 神经元
神经元是人工神经网络的基本处理单元, 一般是多输入单输出的单元, 其结构模型如图1所示.其中:xi表示输入信号;n个输入信号同时输入神经元j.wij表示输入信号xi与神经元j连接的权重值, bj表示神经元的内部状态即偏置值, yj为神经元的输出.输入与输出之间的对应关系可用下式表示:

图1 神经元模型

f (·) 为激励函数, 其可以有很多种选择, 可以是线性纠正函数 (Rectified Linear Unit, ReLU) [25], sigmoid函数、tanh (x) 函数、径向基函数等。
1.2 多层感知器
多层感知器
本文介绍了结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的风电功率预测模型。首先概述了CNN、BiLSTM和Attention的工作原理,然后展示了Matlab源代码片段,用于处理时间序列数据的预测。文章还包括模型的运行结果和适用的Matlab版本信息。
订阅专栏 解锁全文
706

被折叠的 条评论
为什么被折叠?



