2023 年高教社杯全国大学生数学建模竞赛E题思路

本文提供了2023年高教社杯全国大学生数学建模竞赛E题的解题思路和参考资料。针对黄河水沙监测数据,探讨了水位、水流量与含沙量的关系,分析水沙通量的特性,预测未来两年变化趋势,并提出最优采样监测方案。同时,分析了小浪底水库调水调沙的效果和不调水调沙后的可能影响。
摘要由CSDN通过智能技术生成

⛄一、思路与参考代码

🏆1:订阅此专栏,即可见解题思路+参考论文+一次付费+持续更新!
🏆2:订阅此专栏,即可获得以下专栏(初级版)任意代码一份,扫描文章底部QQ名片,提供订阅记录,备注所需代码期号
付费专栏Matlab仿真全集(初级版)

⛄二、题目及附件

E 题 黄河水沙监测数据分析
黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变化和人民生活的影响,以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾等方面都具有重要的理论指导意义。
附件 1 给出了位于小浪底水库下游黄河某水文站近 6 年的水位、水流量与含沙量的实际监测数据,附件 2 给出了该水文站近 6 年黄河断面的测量数据,附件 3 给出了该水文站部分监测点的相关数据。请建立数学模型研究以下问题:

问题 1 研究该水文站黄河水的含沙量与时间、水位、水流量的关系,并估算近 6 年该水文站的年总水流量和年总排沙量。

问题 2

对于2023高教全国大学生数学建模竞赛的C思路,我可以给出一些指导性的思路,但具体的解方法需要根据目内容来确定。 首先,针对C,你可以先仔细阅读目,理解问背景和要求。然后,从数学建模的角度出发,思考如何用数学模型描述问,并分析问的核心要素。 以下是一些可能的思路和解方向: 1. 确定问类型:首先,确定问是什么类型的数学模型问,是优化问、动态规划问还是其他类型的问。这有助于我们选择合适的数学方法和建模思路。 2. 数据分析和处理:对于给定的数据,进行数据分析和处理是一个重要的步骤。可以使用统计分析、概率模型等方法来处理数据,得到更有用的信息。 3. 建立数学模型:根据问要求和已有的信息,建立相应的数学模型。可能会涉及到线性规划、非线性规划、动力系统、图论、随机过程等数学工具和方法。 4. 模型求解和验证:使用适当的算法和计算工具对建立的数学模型进行求解,并验证模型的有效性和合理性。可以使用数值计算、仿真实验等方法。 5. 结果分析和讨论:对求解结果进行分析和讨论,可以比较不同情况下的结果,探讨模型的优缺点,并提出可能的改进和扩展。 需要注意的是,这只是一个大致的思路指导,具体的解方法还需根据目内容来确定。在解过程中,需要结合数学知识和建模经验,合理使用数学工具和软件工具,灵活运用各种方法和技巧,才能得到较好的解结果。希望以上的思路能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值