2023年华为杯中国研究生数学建模竞赛B题DFT类矩阵的整数分解逼近思路

本文探讨2023年华为杯中国研究生数学建模竞赛B题,涉及DFT类矩阵的整数分解逼近。通过对DFT矩阵的分解,以降低硬件复杂度,提出在不同约束条件下(如稀疏性、元素取值范围)的优化问题,旨在减少乘法器数量和提高计算效率。文章分析了FFT和矩阵连乘的计算思路,并列出五个具体问题,寻求在满足精度要求的同时最小化硬件复杂度。
摘要由CSDN通过智能技术生成

⛄一、思路与参考代码

🏆1:订阅此专栏,即可见解题思路+参考代码+参考论文+一次付费+持续更新!
🏆2:订阅此专栏,即可获得以下专栏(初级版)任意代码一份,扫描文章底部QQ名片,提供订阅记录,备注所需代码期号
付费专栏Matlab仿真全集(初级版)

⛄二、题目及附件

B 题 DFT类矩阵的整数分解逼近
一、问题背景
离散傅里叶变换(Discrete Fourier Transform,DFT)作为一种基本工具广泛应用于工程、科学以及数学领域。例如,通信信号处理中,常用DFT实现信号的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的时频域变换(见图1)。另外在信道估计中,也需要用到逆DFT(IDFT)和DFT以便对信道估计结果进行时域降噪(见图2)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值