2023年华为杯中国研究生数学建模竞赛F题强对流降水临近预报思路

该博客探讨了如何利用双偏振雷达数据改进强对流降水的临近预报,包括建立数学模型提取微物理特征、缓解预报模糊效应、定量降水估计以及评估数据融合策略。提出了利用CNN和RNN等深度学习模型来处理雷达反射率因子和双偏振变量,旨在提高预报准确性和细节真实性。
摘要由CSDN通过智能技术生成

⛄一、思路与参考代码

🏆1:订阅此专栏,即可见解题思路+参考代码+参考论文+一次付费+持续更新!
🏆2:订阅此专栏,即可获得以下专栏(初级版)任意代码一份,扫描文章底部QQ名片,提供订阅记录,备注所需代码期号
付费专栏Matlab仿真全集(初级版)

⛄二、题目及附件

F题 强对流降水临近预报
我国地域辽阔,自然条件复杂,因此灾害性天气种类繁多,地区差异大。其中,雷雨大风、冰雹、龙卷、短时强降水等强对流天气是造成经济损失、危害生命安全最严重的一类灾害性天气[1]。以2022年为例,我国强对流天气引发风雹灾害造成的死亡失踪人数和直接经济损失分别占73%和69%。由于强对流天气具有突发性和局地性强、生命史短、灾害重等特点,其短时(012小时)和临近(02小时)预报通常也是天气预报业务中的难点。
传统强对流天气临近预报主要依靠雷达等观测资料,结合风暴识别、追踪技术进行雷达外推预报,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值