【风电功率预测】蜜獾算法优化森林算法HBA-RF风电功率回归预测(含前后对比)【含Matlab源码 3250期】

本文介绍了蜜獾算法优化的随机森林算法(HBA-RF)在风电功率回归预测中的应用。通过蜜獾算法调整随机森林的参数,如决策树数量和最小叶子节点数,提高预测性能。文中提供了Matlab源码,并对比了HBA-RF与标准随机森林(RF)的预测结果,显示了HBA-RF的优越性。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、蜜獾算法优化森林算法HBA-RF风电功率回归预测简介

1 标准麻雀算法
算法运算过程由探索者、追随者与预警者3部分构成,其中探索者与追随者的总数量与比例不变,根据适应度数值的改变,两者可以相互转化。通过觅食和反捕食行为来不断更新种群成员最优位置。

设种群数量为n,在第K次迭代中,探索者的位置更新方式如下:
在这里插入图片描述
追随者的位置更新方式如下:
在这里插入图片描述
预警者在种群中的比例在10%~20%,位置更新方式如下:
在这里插入图片描述
<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值