
⛄一、遗传算法优化自适应模糊圣经网络回归预测简介
1 遗传算法
遗传算法是一种基于生物进化论模型的优化算法,通过模拟生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。遗传算法可以用于解决各种优化问题,如函数优化、组合优化、机器学习等。在遗传算法中,个体的适应度函数值越高,就越有可能被选择为下一代的父代,从而进化出更优秀的解。遗传算法的优点是可以在大规模搜索空间中找到全局最优解,但是也存在一些缺点,如收敛速度慢、参数设置困难等。
2 遗传算法步骤
遗传算法是一种模拟自然进化过程的优化算法,其步骤如下:
(1)初始化种群:随机生成一定数量的个体,每个个体都是由若干个基因组成的染色体。
(2)评估适应度:对于每个个体,通过一个适应度函数来评估其适应度,即该个体在解决问题中的表现好坏。
(3)选择操作:根据适应度函数的值,选择一部分个
本文介绍了遗传算法优化的自适应模糊神经网络(GA-ANFIS)在数据回归预测中的应用。文章详细阐述了遗传算法的原理和步骤,并提供了MATLAB部分源代码,展示如何训练和评估模型。最后,文中提到了MATLAB版本和相关参考文献。
订阅专栏 解锁全文
576

被折叠的 条评论
为什么被折叠?



