【BF时间序列预测】天牛须算法改进粒子滤波BAS-BF时间序列预测(含MAE)【含Matlab源码 3299期】

本文介绍了天牛须算法改进的粒子滤波BAS-BF时间序列预测方法,详细阐述了天牛须搜索算法的原理及代码实现,并提供了MATLAB源码示例。通过天牛须算法,该方法能提高粒子滤波的精度和效率,适用于时间序列预测。附带部分源代码和运行结果。
摘要由CSDN通过智能技术生成

⛄一、天牛须算法改进粒子滤波BAS-BF时间序列预测简介

1 天牛须搜索算法定义
天牛须搜索(Beetle Antennae Search-BAS),也叫甲壳虫须搜索,是2017年提出的一种高效的智能优化算法。类似于遗传算法、粒子群算法、模拟退火等智能优化算法,天牛须搜索不需要知道函数的具体形式,不要虚梯度信息,就可以实现高效寻优。相比于粒子群算法,天牛须搜索只只要一个个体,即一个天牛,运算量大大降低。

2 原理及代码实现
2.1 仿生原理
天牛须搜索时受到天牛觅食原理启发而开发的算法。
生物原理:当天牛觅食时,天牛并不知道食物在哪,而是根据食物气味的强弱来觅食。天牛有俩只长触角,如果左边触角收到的气味强度比右边大,那下一步天牛就往左飞,否则就往右飞。根据这一简单原理天牛就可以有效找到食物。
天牛须搜索得来的启发:食物的气味就相当于一个函数,这个函数在三维空间每个点值都不同,天牛两个须可以采集自身附近两点的气味值,天牛的目的是找到全局气味值最大的点。仿照天牛的行为,我们就可以高效的进行函数寻优。

2.2 算法
天牛在三维空间运动,而天牛须搜索需要对任意维函数都有效才可以。因而,天牛须搜索是对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值