【光伏功率预测】麻雀算法结合变分模态分解优化长短时记忆网络SSA-VMD-LSTM光伏发电功率预测 【含Matlab源码 3300期】

本文介绍了使用麻雀算法结合变分模态分解(VMD)优化的长短时记忆网络(LSTM)进行光伏发电功率预测的方法。通过Matlab实现,包括算法步骤、部分源代码展示、运行结果以及参考资料。
摘要由CSDN通过智能技术生成

⛄一、麻雀算法结合变分模态分解优化长短时记忆网络SSA-VMD-LSTM光伏发电功率预测简介

1 标准麻雀算法
算法运算过程由探索者、追随者与预警者3部分构成,其中探索者与追随者的总数量与比例不变,根据适应度数值的改变,两者可以相互转化。通过觅食和反捕食行为来不断更新种群成员最优位置。

设种群数量为n,在第K次迭代中,探索者的位置更新方式如下:
在这里插入图片描述
追随者的位置更新方式如下:
在这里插入图片描述
预警者在种群中的比例在10%~20%,位置更新方式如下:
在这里插入图片描述

2 麻雀算法步骤
麻雀算法是一种新型的智能优化算法,其步骤如下:
(1)初始化种群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值