【图像压缩】小波变换DWT图像压缩(含PNSR压缩比)【含Matlab源码 3309期】

本文介绍了小波变换在图像压缩中的应用,相较于DCT,小波变换具备更好的局部优化性能,适用于图像压缩。文章详细阐述了小波变换图像压缩的基本步骤,包括层分解、重构、量化和熵编码。此外,提供了MATLAB源码,展示如何进行离散小波变换、高频系数处理和反变换,以及计算低频分量占比。
摘要由CSDN通过智能技术生成

⛄一、小波变换DWT图像压缩简介

图像压缩编码利用离散余弦变换(DCT)作为主要的变换技术,并成功的应用于各种标准,比如JPEG、MPEG-1、MPEG-2。但是,在基于DCT图像变换编码中,人们将图像分为88像素或者1616像素的块来处理,从而容易出现方块效应与蚊式噪声。小波变换是全局变换,在时域和频域都由良好的局部优化性能。小波变换将图像的像素解相关的变换系数进行编码,比经典编码的效率更高,而且几乎没有失真,在应用中易于考虑人类的视觉特性,从而成为图像压缩编码的主要技术之一。小波变换在信号的高频部分可以取得较好的时间分辨率:在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号(如语音、图像等)中提取信息,达到数据压缩的目的。

1 小波变换的图像压缩基本步骤
①用小波对图像层分解并提取分解结构中的低频和高频系数
②各频率成分重构
③对第一层低频信息压缩
④对第二层低频信息压缩

2 小波编解码系统的框图
小波变换是全局变换,在时域和频域都由良好的局部优化性能。小波变换将图像的像素解相关的变换系数进行编码,比经典编码的效率更高,而且几乎没有失真,在应用中易于考虑人类的视觉特性,从而成为图像压缩编码的主要技术之一。小波变换在信号的高频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值