⛄一、 VGG19
1 什么是VGG
VGG是Oxford的Visual Geometry Group的组提出的。
该网络是在ILSVRC 2014上的相关工作,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能。
VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。
2 VGG原理
VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5)。
对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。
简单来说,在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。
比如,3个步长为1的3x3卷积核的一层层叠加作用可看成一个大小为7的感受野(其实就表示3个3x3连续卷积相当于一个7x7卷积),其参数总量为 3x(9xC^2)
如果直接使用7x7卷积核,其参数总量为 49xC^2 ÿ
本文介绍了VGG19网络结构及其在图像识别中的优势,特别是在果树叶子病虫识别任务中的应用。通过Matlab源代码展示了如何加载模型参数、对图像进行分类并获取识别结果。实验使用了2014a版本的Matlab,参考了相关文献进行研究。
订阅专栏 解锁全文
1807

被折叠的 条评论
为什么被折叠?



