⛄一、BP神经网络水稻虫情预测
** 摘要**
农作物虫害一直对庄稼的生长造成了巨大的危害,使作物丰收惨遭损失。为了使害虫得到有效的治理,其关键就是预测害虫发生动态,从而采用准确的措施来减少害虫的发生量,确保庄稼的好丰收。
预测害虫发生量是决定防治庄稼的面积、防治频率及防治范围的依据。随着人工智能技术的快速发展,载加上计算机的辅助,给水稻虫情预测提供了很多新方法,神经网络具有自学习和自适应等特征,并且又具有很强的非线性逼近能力,所以它不用建立复杂的非线性系统的显含关系和数学模型就可以避免许多人为因素的影响,也可以克服传统定量预测方法的许多局限及面临的困难。因此,神经网络在建立合理性和适用性的预测模拟中具有独特的优势,为解决水稻虫害发生量这种非线性系统的预测提供有效的方法。
本次课程设计利用BP神经网络理论,基于MATLAB语言建立了水稻虫害发生量预测系统,确定了发生量与自然因素之间的联系。其中自然因素包括以下四个:日照时长、降雨量、平均气温、最低气温。并通过对黄冈黄州田间水稻2003年到2010年间6月到11月气象数据与虫害发生程度的对应关系来建立模型,对实验结果进行了一系列的分析。
1 绪论
1.1研究的目的及意义
中国是农业大国,搞好农业生产是关系到本国长治久安的重要事。在中国的农作物生产中,作为中国重要的粮食作物之一的水稻,占有举足轻重的地位,根据统计&
本文探讨了利用BP神经网络进行水稻虫情预测的重要性,介绍了预测方法和MATLAB实现过程。通过分析日照时长、降雨量、平均气温、最低气温等自然因素,建立模型预测害虫发生量,旨在提供准确的防治依据,减少农作物损失。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



