⛄一、经验模态分解和主成分分析的长短期记忆网络EMD-PCA-LSTM光伏功率预测简介
1 摘要
提高光伏功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义。本文提出一种经验模态分解(EMD)、主成分分析(PCA)和长短期记忆神经网络(LSTM)相结合的光伏功率预测模型。充分考虑制约光伏输出功率的5种环境因素,首先利用EMD将环境因素序列进行分解,得到数据信号在不同时间尺度上的变化情况,降低环境因素序列的非平稳性;其次利用PCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。北半球的8个月实测数据进行验证,实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。
2 研究背景
光伏功率的准确预测关乎电网的合理调度、安全运行和系统稳定。随着电厂规模的不断扩增,电厂的数据量也呈爆炸式的增长,传统的神经网络光伏功率预测模型一方面受电厂来源数据的制约,忽略了部分环境因素对光伏功率的影响,缺乏对多元环境序列信息的有效利用;另一方面,由于光伏功率与多元环境序列信息呈非线性变化,随着网络输入变量的增多,会导致模型收敛速度减慢,
本文提出了一种结合经验模态分解(EMD)、主成分分析(PCA)和长短期记忆网络(LSTM)的光伏功率预测模型,通过EMD降低非平稳性,PCA减少冗余,LSTM进行动态时间建模,提高了预测精度。在Matlab环境下进行了实现和验证,实验结果表明模型优于传统方法。
订阅专栏 解锁全文
157

被折叠的 条评论
为什么被折叠?



