【光伏功率预测】经验模态分解和主成分分析的长短期记忆网络EMD-PCA-LSTM光伏功率预测【含Matlab源码 3320期】

本文提出了一种结合经验模态分解(EMD)、主成分分析(PCA)和长短期记忆网络(LSTM)的光伏功率预测模型,通过EMD降低非平稳性,PCA减少冗余,LSTM进行动态时间建模,提高了预测精度。在Matlab环境下进行了实现和验证,实验结果表明模型优于传统方法。
摘要由CSDN通过智能技术生成

⛄一、经验模态分解和主成分分析的长短期记忆网络EMD-PCA-LSTM光伏功率预测简介

1 摘要
提高光伏功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义。本文提出一种经验模态分解(EMD)、主成分分析(PCA)和长短期记忆神经网络(LSTM)相结合的光伏功率预测模型。充分考虑制约光伏输出功率的5种环境因素,首先利用EMD将环境因素序列进行分解,得到数据信号在不同时间尺度上的变化情况,降低环境因素序列的非平稳性;其次利用PCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。北半球的8个月实测数据进行验证,实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。

2 研究背景
光伏功率的准确预测关乎电网的合理调度、安全运行和系统稳定。随着电厂规模的不断扩增,电厂的数据量也呈爆炸式的增长,传统的神经网络光伏功率预测模型一方面受电厂来源数据的制约,忽略了部分环境因素对光伏功率的影响,缺乏对多元环境序列信息的有效利用;另一方面,由于光伏功率与多元环境序列信息呈非线性变化,随着网络输入变量的增多,会导致模型收敛速度减慢,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值