【LSTM分类】开普勒算法优化注意力机制的卷积神经网络结合长短记忆神经网络KOA-CNN-LSTM-attention数据分类【含Matlab源码 3324期】

本文介绍了一个结合开普勒算法(KOA)、卷积神经网络(CNN)和长短时记忆网络(LSTM)的注意力机制数据分类模型,用于优化预测性能。文章详细阐述了LSTM的基础概念,CNN的结构,以及在模型中的应用。通过Matlab实现,展示了部分源代码、运行结果,并讨论了模型的训练、正则化方法(dropout技术)以及特征面数目对模型性能的影响。最后,提供了模型的运行结果和参考文献。
摘要由CSDN通过智能技术生成

⛄一、开普勒算法优化注意力机制的卷积神经网络结合长短记忆神经网络KOA-CNN-LSTM-attention数据分类

1 长短记忆神经网络基本概念
长短时记忆网络(Long Short Term Memory Network, LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。
原始RNN无法处理长距离依赖,原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。
长短时记忆网络在RNN的基础上再增加一个状态c,让它来保存长期的状态。
新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:
我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值x t x_tx
t、上一时刻LSTM的输出值h t − 1 h_{t-1}h t−1 、以及上一时刻的单元状态c t − 1 c_{t-1}c t−1​;
LSTM的输出有两个:当前时刻LSTM输出值h t h_th t 、和当前时刻的单元状态c t c_tc t 。注意x xx、h hh、c cc都是向量,如无特别说明,下文x,h,c不带下标时均表示向量。
LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值