⛄一、开普勒算法优化注意力机制的卷积神经网络结合长短记忆神经网络KOA-CNN-LSTM-attention数据分类
1 长短记忆神经网络基本概念
长短时记忆网络(Long Short Term Memory Network, LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。
原始RNN无法处理长距离依赖,原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。
长短时记忆网络在RNN的基础上再增加一个状态c,让它来保存长期的状态。
新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:
我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值x t x_tx
t、上一时刻LSTM的输出值h t − 1 h_{t-1}h t−1 、以及上一时刻的单元状态c t − 1 c_{t-1}c t−1;
LSTM的输出有两个:当前时刻LSTM输出值h t h_th t 、和当前时刻的单元状态c t c_tc t 。注意x xx、h hh、c cc都是向量,如无特别说明,下文x,h,c不带下标时均表示向量。
LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。
本文介绍了使用麻雀算法优化的注意力机制卷积神经网络(CNN-LSTM)在数据分类中的应用。内容涵盖LSTM基本概念、CNN原理,以及结合麻雀算法的优化过程。文章提供了Matlab源码,并展示了运行结果,适用于深度学习和数据分类领域的研究。
订阅专栏 解锁全文
95

被折叠的 条评论
为什么被折叠?



