【SOC预测】改进的自适应遗传算法优化BP神经网络IGA-BP电池充电状态SOC预测(含前后对比)【含Matlab源码 3331期】

本文介绍了使用粒子滤波算法和自适应遗传算法优化的BP神经网络预测锂离子电池的荷电状态(SOC)。详细探讨了粒子滤波的工作原理和遗传算法的自适应策略,包括编码、解码、交配、变异和选择步骤。此外,提供了部分Matlab源代码,并展示了优化前后的运行结果。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值