⛄一、遗传算法路径规划问题
1 算法流程**
基于遗传算法的拣货路径问题优化算法流程如图3所示。

图3 求解拣货路径问题的遗传算法流程图
2 确定编码方案
对于一单一车的境况,采用自然数编码方式,先对订单上的货物对应在仓库中的存储位置(储位)按顺序依次进行自然数编号,然后用这些储位点编号所组成的自然数序列表示拣货路径。其具体表示方法如下:
设订单中的有4种货物需要从仓库中拣取,这4种货物分布在仓库中4个储位位置上。则可以用0表示仓库出入口,从1至4的4个自然数分别依次表示一个储位。假设该订单的拣货路径如下:
路径:出入口0→储位点1→储位点4→储位点2→储位点3→出入口0
遗传算法所表示的自然数系列为:{0 1 4 2 3 0}。
考虑到一单多车情况下拣货路径问题中订单上的拣取任务可能要通过多次车次才能完成,为了在可行解中体现出多车次的特点,将对应的自然数序列插入相应的零来体现多车特点。具体方法如下:
设订单中的有7种货物需要从仓库中拣取,这7种货物分布在仓库中7个储位位置
该博客介绍了基于MATLAB的遗传算法解决仓库拣货路径规划问题,通过编码方案、适应度函数、交叉变异算子等遗传算法组件设计,并结合Clothoid曲线进行路径平滑。提供了部分源码并展示了运行结果。
订阅专栏 解锁全文
300

被折叠的 条评论
为什么被折叠?



