【风电功率预测】sine混沌映射改进的麻雀算法优化BP神经网络风电预测【含Matlab源码 3351期】

⛄一、改进麻雀搜索算法优化BP神经网络

**1 ISSA-BP 神经网络模型

  1. 1 BP 神经网络**
    BP 神经网络是由文献[8—9]首次提出的一种根据误差进行训练的多层反向反馈神经网络模型。该模型的特点是信号向前传播,误差向后传播,实现一种从输入到输出的任意的非线性映射[10]。BP神经网络模型分为输入层、隐含层、输出层 3 层网络结构。正向传播中,输入信号经隐含层分配权重,传递到输出层计算输出值。正向传播完成后,若预测结果超出期望误差,则利用反向传播修改权值和阈值,得到最优参数,以建立模型[11-12]。图 1 为 BP神经网络的结构示意图。
    在这里插入图片描述
    1. 2 麻雀搜索算法
    SSA( sparrow search algorithm) 是受麻雀觅食行为和反捕食行为启发而提出的一种新型群智能优化算法,与其他算法相比,具有搜索精度高、稳健性强的特点[13-14]。麻雀种群内部存在明显的分工,一部分麻雀负责觅食并提供觅食指导,其余麻雀则进行食物获取。同时,麻雀意识到危险时,会及时发出警报信号,整
Sine混沌映射优化麻雀算法改进BP神经网络是一种将混沌映射麻雀算法应用于BP神经网络训练的方法,下面将介绍其基本思想和步骤。 1. BP神经网络简介:BP神经网络是一种常用的前向反馈人工神经网络,可以用于解决分类、回归等问题。但是,BP神经网络的训练过程中容易陷入局部最优解,训练速度较慢。 2. 混沌映射简介:混沌映射是一类具有随机性和确定性的非线性动力学系统,具有高度敏感性和无周性。Sine混沌映射是一种常见的混沌映射模型。 3. 麻雀算法简介:麻雀算法是一种基于麻雀群体行为的优化算法,模拟了麻雀觅食的过程,具有较好的全局搜索能力和收敛速度。 4. Sine混沌映射优化麻雀算法改进BP神经网络的步骤: a. 初始化BP神经网络的权重和偏置。 b. 生成初始种群:使用Sine混沌映射生成初始种群,每个个体表示一组BP神经网络的权重和偏置。 c. 麻雀算法搜索:利用麻雀算法,根据适应度函数评估个体的优劣,通过迭代搜索找到适应度较好的个体。 d. 权重和偏置更新:根据麻雀算法搜索得到的个体,更新BP神经网络的权重和偏置。 e. 训练BP神经网络:使用更新后的权重和偏置,对BP神经网络进行训练,通过反向传播算法进行权重和偏置的调整。 f. 评估性能:根据训练结果,评估BP神经网络在测试数据上的性能指标,如准确率、均方误差等。 g. 终止条件判断:根据预设的终止条件(如达到最大迭代次数或满足收敛要求),决定是否结束训练过程。 通过将Sine混沌映射麻雀算法结合应用于BP神经网络的训练过程中,可以提高BP神经网络的全局搜索能力和收敛速度,进而改进BP神经网络的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值