【风电功率预测】开普勒算法优化卷积神经网络结合注意力机制的双向长短记忆网络KOA-CNN-BiLSTM-Attention风电功率时间序列预测【含Matlab源码 3374期】

本文介绍了一种结合开普勒优化算法(KOA)的卷积神经网络(CNN)与注意力机制的双向长短记忆网络(BiLSTM)的风电功率预测方法。KOA用于优化CNN和BiLSTM,以提高预测精度。文章详细阐述了KOA、CNN、BiLSTM的工作原理,并提供了部分Matlab源码和运行结果。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、开普勒算法优化卷积神经网络结合注意力机制的双向长短记忆网络KOA-CNN-BiLSTM-Attention风电功率预测

1 开普勒算法
开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出。

2 卷积神经网络
2.1 神经元
神经元是人工神经网络的基本处理单元, 一般是多输入单输出的单元, 其结构模型如图1所示.其中:xi表示输入信号;n个输入信号同时输入神经元j.wij表示输入信号xi与神经元j连接的权重值, bj表示神经元的内部状态即偏置值, yj为神经元的输出.输入与输出之间的对应关系可用下式表示:
在这里插入图片描述
图1 神经元模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值