
⛄一、开普勒算法优化卷积神经网络结合注意力机制的双向长短记忆网络KOA-CNN-BiLSTM-Attention风电功率预测
1 开普勒算法
开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出。
2 卷积神经网络
2.1 神经元
神经元是人工神经网络的基本处理单元, 一般是多输入单输出的单元, 其结构模型如图1所示.其中:xi表示输入信号;n个输入信号同时输入神经元j.wij表示输入信号xi与神经元j连接的权重值, bj表示神经元的内部状态即偏置值, yj为神经元的输出.输入与输出之间的对应关系可用下式表示:

图1 神经元模型
本文介绍了一种结合开普勒优化算法(KOA)的卷积神经网络(CNN)与注意力机制的双向长短记忆网络(BiLSTM)的风电功率预测方法。KOA用于优化CNN和BiLSTM,以提高预测精度。文章详细阐述了KOA、CNN、BiLSTM的工作原理,并提供了部分Matlab源码和运行结果。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



