【图像重建】Split Bregman稀疏图像重建【含Matlab源码 3413期】

本文介绍了Split Bregman算法在图像稀疏重建中的使用,通过MATLAB代码展示如何进行图像重建,并给出了部分源代码、运行结果和所需MATLAB版本。算法基于L1范数,用于解决带约束的最小二乘问题,适用于大规模数据的高效重建。
摘要由CSDN通过智能技术生成

⛄一、Split Bregman稀疏图像重建

Split Bregman算法是一种常用的优化算法, 它可以用于求解稀疏问题, 并且具有全局收敛性和较快的速度。在本文中, 笔者将介绍如何利用Split Bregman算法实现图像稀疏重建, 并提供相应的MATLAB代码。
在图像处理Q领域中,图像稀疏表示技术是一种重要的方法,它可以将复杂的信号分解成较为简单的基本元素,从而实现对图像的压缩和恢复。然而,由于数据量庞大和算法复杂度高的限制,如何高效、准确地实现图像的稀疏重建一直是研究人员关注的焦点。

1 算法原理
Spl i Bregman算法是一种著名的凸优化算法, 它可以用于求解带约束的最小二乘问题。该算法基于Bregman距离(即以某一隐变量的差值作为标准的距离度量),通过引入一个新的变量来实现原问题的拆分与求解。
在图像稀疏重建中, 我们通常采用L 1范数作为稀疏度量, 将原始图像分解为基本元素和稀疏表示Q系数。则基于Split Bregman算法的图像重建可以表示为:
min|Wx||1+N/2||A x-b|| 2
其中,x为待求解的稀疏系数,A为已知的测量矩阵,b为测量结果,W为L1范数正则项矩阵,A为系数。

⛄二、部分源代码

N =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值