⛄一、阿基米德搜索算法优化支持向量机
塑料热压成型是塑料加工业中简单、普遍之加工方法,主要是利用加热加工模具后,注入试料,以压力将模型固定于加热板,控制试料的熔融温度和时间,融化后硬化、冷却,再予以取出模型成品即可。热压成型具有模具便宜、成品厚度均匀等优点,其产品有冰箱门的内衬、汽车档泥板、汽车底盘、软质饮水杯、标示牌、包装材料及其它厚度均匀的产品。
在塑料热压成型中,工艺参数的选择起着至关重要的作用,确定原则是选择合适的固化温度、固化时间、固化压力、升温速度、加压温度和加压时间,保证塑料成型时获得较高性能的制件。而传统的确定方法主要依靠多次实验,采用经验设计准则设计,完全取决于设计者的经验,由此所得的工艺参数往往须经过多次试验才能调整出合适的参数,效率很低。因此需要建立获得较高性能制件的各热压成型工艺参数之间的关系,文中利用人工神经网络建立塑料热压成型工艺参数的数学模型,用遗传算法对参数进行优化,较好地控制了工艺参数,提高了制件性能。
1 塑料热压成型实验方法及其工艺参数和目标函数的确定
实验原材料为塑料树脂材料 PP( 聚丙烯) ,实验设备为液压式万能试验机、箱式电阻炉和自制的搅拌机,将原材料放入搅拌机中搅拌均匀后,放入箱式电阻炉加热到 175 ~ 180 ℃,把加热后的原材料放入到预热到相同温度的模具中,在液压
本文介绍了如何利用阿基米德搜索算法优化支持向量机(AOA-SVM)进行塑料热压成型工艺参数预测。通过结合SVM回归和阿基米德搜索算法,解决传统SVM可能存在的过拟合或欠拟合问题,以提高预测准确性和效率。实验涉及固化温度、固化时间等六个工艺参数,并关注横向拉伸模量等四个目标函数。文章提供Matlab源码,适用于塑料加工业中的工艺参数优化。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



