⛄一、鲸鱼算法优化长短时记忆神经网络WOA-LSTM风电数据预测
1 鲸鱼算法
一种元启发式优化算法,模拟座头鲸狩猎行为的元启发式优化算法。目前的工作与其他群优化算法相比的主要区别在于,采用随机或最佳搜索代理来模拟捕猎行为,并使用螺旋来模拟座头鲸的泡泡网攻击机制。该算法具有机制简单、参数少、寻优能力强等优点,在经济调度、最优控制、光伏系统、图像分割等方面得到广泛的应用。
2.1 算法基本原理
座头鲸有特殊的捕猎方法,这种觅食行为被称为泡泡网觅食法;标准 WOA 模拟了座头鲸特有的搜索方法和围捕机制,主要包括:围捕猎物、气泡网捕食、搜索猎物三个重要阶段。WOA 中每个座头鲸的位置代表一个潜在解,通过在解空间中不断更新鲸鱼的位置,最终获得全局最优解。
(1)围捕猎物(Encircling prey)
鲸鱼的搜索范围是全局解空间,需要先确定猎物的位置以便包围。由于最优设计在搜索速度中的位置不是先验已知的,因此WOA算法假定当前的最佳候选解是目标猎物或接近最优解。在定义了最佳搜索代理之后,其他搜索代理将尝试向最佳搜索代理更新它们的位置。
(2)气泡网捕食:
座头鲸捕食主要有两个机制:包围捕食和气泡网捕食。采用气泡网捕食时,座头鲸与猎物间的位置更新用对数螺旋方程表达.
(3)搜索猎物:
本文介绍了利用鲸鱼算法(WOA)优化的长短时记忆神经网络(LSTM)进行风电功率预测的方法。首先详细阐述了鲸鱼算法的基本原理和流程,接着讨论了LSTM在处理序列数据的优势,以及针对RNN的梯度消失问题的解决方案。随后,给出了部分Matlab源码示例,并提到了实验运行结果和使用的Matlab版本。
订阅专栏 解锁全文
650

被折叠的 条评论
为什么被折叠?



