⛄一、遗传算法优化鲁棒极限学习机风电数据预测
1 遗传算法
遗传算法是一种基于生物进化论模型的优化算法,通过模拟生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。遗传算法可以用于解决各种优化问题,如函数优化、组合优化、机器学习等。在遗传算法中,个体的适应度函数值越高,就越有可能被选择为下一代的父代,从而进化出更优秀的解。遗传算法的优点是可以在大规模搜索空间中找到全局最优解,但是也存在一些缺点,如收敛速度慢、参数设置困难等。
** 遗传算法步骤**
遗传算法是一种模拟自然进化过程的优化算法,其步骤如下:
(1)初始化种群:随机生成一定数量的个体,每个个体都是由若干个基因组成的染色体。
(2)评估适应度:对于每个个体,通过一个适应度函数来评估其适应度,即该个体在解决问题中的表现好坏。
(3)选择操作:根据适应度函数的值,选择一部分个体作为父代,用于产生下一代个体。
(4)交叉操作:对于选出的父代个体,进行交叉操作,生成新的个体。
(5)变异操作:对于新生成的个体
本文介绍了遗传算法优化鲁棒极限学习机(RELM)在风电功率预测中的应用。首先,详细解释了遗传算法的原理和步骤,接着阐述了RELM的实现过程,特别强调了其在面对噪声和异常值时的鲁棒性。文章提供了一部分Matlab源代码,并提及了模型评估和数据处理的部分。最后,提到了使用的matlab版本和参考文献。
订阅专栏 解锁全文
77

被折叠的 条评论
为什么被折叠?



