【风电功率预测】遗传算法优化鲁棒极限学习机PSO-RELM风电回归预测【含Matlab源码 3433期】

本文介绍了遗传算法优化鲁棒极限学习机(RELM)在风电功率预测中的应用。首先,详细解释了遗传算法的原理和步骤,接着阐述了RELM的实现过程,特别强调了其在面对噪声和异常值时的鲁棒性。文章提供了一部分Matlab源代码,并提及了模型评估和数据处理的部分。最后,提到了使用的matlab版本和参考文献。
摘要由CSDN通过智能技术生成

⛄一、遗传算法优化鲁棒极限学习机风电数据预测

1 遗传算法
遗传算法是一种基于生物进化论模型的优化算法,通过模拟生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。遗传算法可以用于解决各种优化问题,如函数优化、组合优化、机器学习等。在遗传算法中,个体的适应度函数值越高,就越有可能被选择为下一代的父代,从而进化出更优秀的解。遗传算法的优点是可以在大规模搜索空间中找到全局最优解,但是也存在一些缺点,如收敛速度慢、参数设置困难等。

** 遗传算法步骤**
遗传算法是一种模拟自然进化过程的优化算法,其步骤如下:
(1)初始化种群:随机生成一定数量的个体,每个个体都是由若干个基因组成的染色体。
(2)评估适应度:对于每个个体,通过一个适应度函数来评估其适应度,即该个体在解决问题中的表现好坏。
(3)选择操作:根据适应度函数的值,选择一部分个体作为父代,用于产生下一代个体。
(4)交叉操作:对于选出的父代个体,进行交叉操作,生成新的个体。
(5)变异操作:对于新生成的个体

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值