⛄一、黏菌算法优化鲁棒极限学习机
1 黏菌算法
SMA是根据黏菌个体的振荡捕食行为提出的一种智能优化算法,自然界中的黏菌可以根据空气中食物气味的浓度来接近食物,当黏菌静脉接触的食物浓度越高,生物振荡越强,黏菌静脉宽度增大,该区域聚集更多黏菌;当该区域食物浓度低时,黏菌转向探索其他区域。黏菌接近食物的数学模型描述如公式1所示:

式中,t为当前迭代次数,Xb(t)为当前最优个体位置,XA(t)和XB(t)为随机选择两个个体的位置,W为黏菌质量,代表适应度权重,vb和vc为控制参数,其中vb∈[-a,a],vc从1线性下降到0,r是[0,1]之间的随机数,控制变量p和参数a的数学模型描述如公式2和公式3所示:

式中,i∈1,2,3…,n,S(i)是当前个体适应度值,DF为当前最佳适应度值,tmax为最
该博客介绍了如何使用黏菌算法优化鲁棒极限学习机(SMA-RELM)进行风速预测。首先,详细阐述了黏菌算法的数学模型和鲁棒极限学习机的工作原理。接着,提供了部分Matlab源代码示例,展示如何实现SMA-RELM。最后,提到了模型的运行结果、使用的Matlab版本和相关参考文献。
订阅专栏 解锁全文
1311

被折叠的 条评论
为什么被折叠?



