【手势识别】深度学习卷积神经网络CNN手势识别(0-9,含识别率)【含Matlab源码 3435期】

本博客介绍了基于Kaggle sign_mnist数据集的手势识别实验,选用0-9手势进行训练。通过加载预训练的CNN网络,在Matlab中对测试数据进行识别,展示了一个示例图像及其识别结果,并计算了手势2的识别正确率。实验使用的是Matlab 2014a版本。
摘要由CSDN通过智能技术生成

⛄一、手势识别简介

1 数据集介绍
本实验所用数据集为从Kaggle平台下载的手语数据集(sign_mnist)中选取的部分数据。

sign_mnist 数据集格式的模式化与经典 MNIST 紧密匹配。每个训练和测试用例表示一个标签 (0-25),作为每个字母 A-Z 的一对一映射(由于手势运动,9=J 或 25=Z 没有情况)。训练数据(27,455 个案例)和测试数据(7172 个案例)大约是标准 MNIST 大小的一半,但在其他方面与标签 pixel1,pixel2…pixel784 的标题行相似,它们表示单个 28x28 像素图像,灰度值在 0-255 之间。原始手势图像数据表示多个用户在不同背景下重复手势。部分示例图片如下:
在这里插入图片描述
本实验从以上数据集中选取十个手势分别定义为 0~9,定义示例图如下:
在这里插入图片描述本实验所用数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值