⛄一、手势识别简介
1 数据集介绍
本实验所用数据集为从Kaggle平台下载的手语数据集(sign_mnist)中选取的部分数据。
sign_mnist 数据集格式的模式化与经典 MNIST 紧密匹配。每个训练和测试用例表示一个标签 (0-25),作为每个字母 A-Z 的一对一映射(由于手势运动,9=J 或 25=Z 没有情况)。训练数据(27,455 个案例)和测试数据(7172 个案例)大约是标准 MNIST 大小的一半,但在其他方面与标签 pixel1,pixel2…pixel784 的标题行相似,它们表示单个 28x28 像素图像,灰度值在 0-255 之间。原始手势图像数据表示多个用户在不同背景下重复手势。部分示例图片如下:

本实验从以上数据集中选取十个手势分别定义为 0~9,定义示例图如下:
本实验所用数据
本博客介绍了基于Kaggle sign_mnist数据集的手势识别实验,选用0-9手势进行训练。通过加载预训练的CNN网络,在Matlab中对测试数据进行识别,展示了一个示例图像及其识别结果,并计算了手势2的识别正确率。实验使用的是Matlab 2014a版本。
订阅专栏 解锁全文
1801

被折叠的 条评论
为什么被折叠?



