⛄一、FMM+Criminisi算法简介
1 FMM算法
FMM算法是由Telea在2004年提出的,主要思想是先处理待修复区域边缘的像素,然后逐步向内推进,直到所有空洞点修复完毕。设Λ为待修复区域,Λ为区域Λ的边界,p为区域Λ的任意一点,在点p周围已知图像内选择一邻域U(p)。为了填充更加精确,增加已知像素点q对待填充空洞点p的影响,添加一个权重函数w(p,q),在邻域U(p)尺度较小时,对点p一阶估计:

其中I位像素值,I(q)为q点的梯度,w(p,q)=dir(p,q)dst(p,q)lev(p,q),dit(p,q)为距离因子,反映了已知像素q对待填充空洞点p的距离影响;lev(p,q)为水平集因子,反映了到达时间的影响;dir(p,q)为方向因子,反映了已知像素q对待填充空洞点p的纹理相关性的影响。对边界填充完后,需要不断迭代上述步骤,逐渐收缩边界直至空洞区域修复完毕。
2 Crimin
本文介绍了FMM算法和Criminisi算法在图像修复中的应用,FMM从边缘开始逐步修复图像,而Criminisi算法考虑了图像结构信息以优化修复顺序。提供了一段Matlab源码示例,并展示了运行结果,适用于MATLAB 2014a。参考文献包括深度图像修复和基于Criminisi算法改进的图像修复技术的研究。
订阅专栏 解锁全文
286

被折叠的 条评论
为什么被折叠?



