大数据技术之Hive基础知识及基础操作(一)

本文介绍了Hive作为Hadoop生态系统中的数据仓库工具,其主要功能是提供类SQL查询接口,用于处理和分析存储在HDFS中的大规模数据。Hive不存储和处理数据,而是依赖HDFS和MapReduce进行数据存储和计算。文章详细阐述了Hive的特点,如批处理处理海量数据、提供ETL工具、支持内部表和外部表,以及表分区和桶的概念。此外,还讨论了Hive与其他组件如HDFS、MapReduce、Pig和HBase的关系,以及Hive的元数据、系统架构和工作原理。
摘要由CSDN通过智能技术生成

一、数据仓库

数据仓库是一个面向主题的、集成的、相对稳定的、反应历史变化的数。据集合,用于支持管理决策。

二、数据仓库的体系结构

三、Hive简介

•Hive是一个构建于Hadoop顶层的数据仓库工具

•某种程度上可以看作是用户编程接口,本身不存储和处理数据

•依赖分布式文件系统HDFS存储数据

•依赖分布式并行计算模型MapReduce处理数据

•定义了简单的类SQL 查询语言——HiveQL

•用户可以通过编写的HiveQL语句运行MapReduce任务

•支持类似SQL的接口,容易进行移植

•是一个可以提供有效、合理、直观组织和使用数据的分析工具

Hive具有的特点非常适用于数据仓库:

•采用批处理方式处理海量数据

• Hive需要把HiveQL语句转换成MapReduce任务进行运行

• 数据仓库存储的是静态数据,对静态数据的分析适合采用批处理方式,不需要快速响应给出结果,而且数据本身也不会频繁变化

•提供适合数据仓库操作的工具

• Hive本身提供了一系列对数据进行提取转化加载的工具,可以存储、查询和分析存储在Hadoop中的大规模数据

• 非常适合数据仓库应用程序维护海量数据、对数据进行挖掘、形成意见和报告等

四、Hive与其他组件关系

•Hive依赖于HDFS 存储数据

HDFS作为高可靠性的底层存储,用来存储海量数据

•Hive依赖于MapReduce 处理数据

MapReduce对这些海量数据进行处理,实现高性能计算,用HiveQL语句编写的处理逻辑最终均要转化为MapReduce任务来运行

•Pig可以作为Hive的替代工具

pig是一种数据流语言和运行环境,适合用于Hadoop和MapReduce平台上查询半结构化数据集。常用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小嘤嘤怪学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值