一、数据仓库
二、数据仓库的体系结构
三、Hive简介
•Hive是一个构建于Hadoop顶层的数据仓库工具
•某种程度上可以看作是用户编程接口,本身不存储和处理数据
•依赖分布式文件系统HDFS存储数据
•依赖分布式并行计算模型MapReduce处理数据
•定义了简单的类SQL 查询语言——HiveQL
•用户可以通过编写的HiveQL语句运行MapReduce任务
•支持类似SQL的接口,容易进行移植
•是一个可以提供有效、合理、直观组织和使用数据的分析工具
Hive具有的特点非常适用于数据仓库:
•采用批处理方式处理海量数据
• Hive需要把HiveQL语句转换成MapReduce任务进行运行
• 数据仓库存储的是静态数据,对静态数据的分析适合采用批处理方式,不需要快速响应给出结果,而且数据本身也不会频繁变化
•提供适合数据仓库操作的工具
• Hive本身提供了一系列对数据进行提取转化加载的工具,可以存储、查询和分析存储在Hadoop中的大规模数据
• 非常适合数据仓库应用程序维护海量数据、对数据进行挖掘、形成意见和报告等
四、Hive与其他组件关系
•Hive依赖于HDFS 存储数据
HDFS作为高可靠性的底层存储,用来存储海量数据
•Hive依赖于MapReduce 处理数据
MapReduce对这些海量数据进行处理,实现高性能计算,用HiveQL语句编写的处理逻辑最终均要转化为MapReduce任务来运行
•Pig可以作为Hive的替代工具
pig是一种数据流语言和运行环境,适合用于Hadoop和MapReduce平台上查询半结构化数据集。常用

本文介绍了Hive作为Hadoop生态系统中的数据仓库工具,其主要功能是提供类SQL查询接口,用于处理和分析存储在HDFS中的大规模数据。Hive不存储和处理数据,而是依赖HDFS和MapReduce进行数据存储和计算。文章详细阐述了Hive的特点,如批处理处理海量数据、提供ETL工具、支持内部表和外部表,以及表分区和桶的概念。此外,还讨论了Hive与其他组件如HDFS、MapReduce、Pig和HBase的关系,以及Hive的元数据、系统架构和工作原理。
最低0.47元/天 解锁文章
844

被折叠的 条评论
为什么被折叠?



