使用python进行前后端分离的web开发 我是写了一个简单的例子,重点是前后端的分离操作和异步申请方式以及数据库的连接,数据库的连接还好一点,异步申请这一块是有点难搞的,需要细究一些。祝愿我们在前进的道路上能够越来越优秀,加油哦ヾ(◍°∇°◍)ノ゙。
使用百度语音识别和语音合成API搭配Flask框架做一个简单的页面 这只是我做的一个小小的玩意,写出来分享给大家,因为时间关系,我没有去连接数据库去做一个真正的前后端完整的玩意,那样子的话就需要再有数据库以及数据库与python语言的连接的知识了,以后我会慢慢探索和了解的ヾ(◍°∇°◍)ノ゙。
Word2Vec模型和Doc2Vec模型的简单实例操作 Word2Vec和Doc2Vec都是无监督学习方法,主要用于从文本数据中学习单词和段落的嵌入表示。Word2Vec主要用于学习单词的向量表示,它有两种模型架构:连续词袋(CBOW)和Skip-gram。在CBOW模型中,通过上下文来预测单个单词学习单词向量,而在Skip-gram模型中,则通过从单个单词预测上下文来学习单词向量(本次使用CBOW模型)。Doc2Vec则是一种用于学习段落嵌入的无监督算法,它扩展了Word2Vec的思想,以段落为基本单位进行训练。
语音信号处理之时域特征、频谱特征、MFCC特征、语谱图特征、谱熵图特征的提取与可视化 首先你需要有一段音频.....,不用太长,我是准备了一个八秒的无损音频,可以用专门的录音软件(例如:Audacity),或者可以下载一些音频然后转为无损(当然有损也可以提取特征),频率最好在16000Hz及以上。其次是你需要在你的python环境中安装以下库,我以pycharm社区办为例。
自然语言处理之TF-IDF算法与TextRank算法的缠绵 综上所述,TD-IDF和TextRank各具优势,适用于不同的应用场景。在需要简单快捷且对准确率要求不是特别高的场景下,可以选择使用TD-IDF;而在需要更深入理解文本内容、处理一词多义或词语关联、进行文本摘要和关键词提取等情况下,使用TextRank可能会更有优势。同时,这两种方法都有其局限性,实际使用时可能需要结合其他的特征提取或机器学习方法以获得更好的效果。