朴素匹配算法和KMP算法

本文介绍了朴素匹配算法的基本原理和代码实现,以及其时间复杂度。随后对比了朴素匹配算法,提出KMP算法,通过构建部分匹配表优化匹配过程,实现更高的效率,时间复杂度为O(n+m)。
摘要由CSDN通过智能技术生成

朴素匹配算法

朴素匹配算法(Naive String Matching Algorithm)是一种简单直观的字符串匹配算法,用于在一个文本串中查找一个模式串的出现位置。它的思想是从文本串的第一个字符开始,依次与模式串的每一个字符进行比较,若匹配失败,则将文本串的指针向后移动一位,再次从该位置开始比较。这个过程一直持续到找到了完全匹配的子串或者文本串的剩余部分长度不足以容纳模式串为止。

代码实现

//朴素模式匹配算法
int index2(SString S,SString T) {
	int i=1,j=1;
	while(i<=S.length &&j<=T.length){
		if(S.ch[i]==T.ch[j]){
			++i;++j;
		}
		else{
			i=i-j+2;
			j=1;//退回重新匹配 
		}
	}
	if(j>T.length){
		return i-T.length;
	} 
	else{
	  return 0;
	}
}

朴素匹配算法的时间复杂度取决于文本串和模式串的长度,最坏情况下为O((n-m+1)m),其中n是文本串的长度,m是模式串的长度。在最坏情况下,需要对文本串中的每一个位置都尝试匹配模式串,而每一次匹配都需要花费O(m)的时间。因此,朴素匹配算法并不是最有效的字符串匹配算法,但它的实现简单,易于理解,是其他更高效算法的基础之一。 

KMP算法

KMP算法(Knuth-Morris-Pratt Algorithm)是一种高效的字符串匹配算法,用于在一个文本串中查找一个模式串的出现位置。与朴素匹配算法相比,KMP算法的优势在于它避免了在文本串中重复匹配已经比较过的字符,从而提高了匹配的效率。

KMP算法的核心思想是利用模式串中已经匹配过的信息,避免在文本串中进行不必要的比较。具体来说,KMP算法通过计算模式串的最长公共前缀与后缀的部分匹配表(Partial Match Table,简称PMT或者next数组),来确定在匹配过程中文本串指针的移动位置。

代码实现

//kmp算法
int Index_KMP(SString S,SString T,int next[]){
	int i=1,j=1;
	while(i<=S.length&&j<=T.length){
		if(j==0||S.ch[i]==T.ch[j]){//继续比较后面的字符 
			++i;
			++j;
		}
		else{
			j=next[j];//模式串向右边移动 
		}
		if(j>T.length)
		return i-T.length;//匹配成功 
		else{
			return 0;
		} 
	}
} 

KMP算法的时间复杂度为O(n+m),其中n是文本串的长度,m是模式串的长度。在构建部分匹配表的过程中,需要对模式串进行预处理,时间复杂度为O(m);在匹配过程中,由于每次匹配失败都会根据部分匹配表调整模式串的指针位置,因此只需要对文本串进行一次遍历,时间复杂度为O(n)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云里雾里!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值