迪杰斯特拉算法 IP、掩码已知的网络号计算 MTU BGP概述

        若想知道每一个子网上的主机数最多多少  则需要调出此子网的子网掩码 将子网掩码转换为二进制 前面有多少个1就说明网络号是多少位 后面多少个0就说明主机位有多少位  最后2的多少位次减二 得出最大主机数

        注意:已知IP地址 求其所在网络号 ------->>>  看IP地址  eg:192.168.1.130/26  后面的/26说明网络号有二十六位 四位一小组 八位一大组  

        列竖式  :上为IP地址号的二进制转换  下为子网掩码号的二进制转换  上下进行AND运算  计算结果转换十进制  加上/26配合计算的十进制的数字构成点分十进制的网络号192.168.1.128/26

        最大传送单元MTU

        MTU指的是 数据链路层所限定的帧格式中数据字段的最大长度

        网络层的分组长度一般不超过MTU的限制长度 所以与IP数据包首部中的总长度字段有关系

=========================================================================

        路由器之间分组转发算法的实现过程

        从数据包首部提取目的主机的IP地址 用子网掩码做AND运算 得出目的地的网络号为N

若网络N与此路由器直接相连 则把数据包直接交付目的主机D

        否则是间接交付 运行下一个条

        若路由表中有目的地址为D 的特定主机路由  则把数据包传送给路由表中所指明地下一跳路由器 否则运行下一条

        若路由表中有一个默认路由 则把数据包传送给路由表中所指明的默认路由器 否则 报告转发分组出错

=========================================================================

        BGP概述

        计算机网络之算法 :

        正交向量特性 -- 码分复用将多个正交的向量叠加来复用 然后使用码片序列将复用分离 分离就是利用了正交向量点乘为零的原理

        循环冗余校验CRC算法 -- 采用二进制模二运算的方法利用除法及余数的原理来进行数据帧传输错误检测

        CSMA/CD协议 -- 在以太网中使用随机争用型的介质访问控制方法 其原理是 先听后发 边发边听 冲突停发 随即延迟后重发

        二进制指数退避算法 -- 是共享资源的随机系统中的一种可行的确保稳定的算法 保证数据帧传输冲突后再次冲突的概率随着冲突次数的增加越来越低

        交换表自学习算法 -- 定义了交换机生成交换表的过程

        生成树协议 -- 防止交换机冗余链路产生环路 确保以太网中无环路的逻辑拓扑结构 从而避免了广播风暴

        分组转发算法 -- 定义了路由器转发分组的流程

        二叉线索搜索算法 -- 一种特殊结构的树 加上线索的二叉树 将无分类的编址的路由表存放在二叉线索的数据结构中 能减小路由表的检索时间

        距离向量算法 --  基础是Bellman-Ford算法 要点是 设X是结点A到B的最短路径上的一个结点 若把路径A到B拆成两端路径A到X和X到B 则每段路径A到X和X到B 也都分别是结点A到X和结点X到B的最短路径 是RIP路由协议的基础

        迪杰斯特拉算法 -- 典型的最短路径算法 用于计算一个结点到其他结点的最短路径 主要特点是以起始点为中心想外层扩展(广度优先搜索思想) 直到终点为止 是OSPF路由协议的基础

        路径向量算法 -- 路由信息中记录路径的轨迹 与距离矢量法非常类似 每个边界网关向邻居路由器广播到目的结点完整路径 力求寻找一条能够到达目的网络且比较好的路由 而并非寻找一条最佳路由

        超时重传时间自适应算法 -- 更多的考虑以往的数据 结合这次新的数据综合判断下一次超时重传时间的设置

        拥塞控制四种算法 -- 慢开始 拥塞避免 快重传 快恢复

=========================================================================

迪杰斯特拉算法!!!!!!!

关于迪杰斯特拉(Dijkstra)算法

        迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。  

        它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止

        一、基本思想

        通过Dijkstra计算图中的最短路径时,需要指定起点s(即从顶点s开始计算)。此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

        初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是”起点s到该顶点的路径”。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。

        二、Dijkstra算法简单例子说明

        初始情况:

 

        第一次松弛,选取A顶点:

 

        第二次松弛,C的估算距离最小,选取C顶点:

 

        第三次松弛,E的估算距离最小,选取E:

 

        第四次松弛,B的估算距离最小,选取B:

 

        第五次松弛:(最后一个点,完成)

 

  经过所有的松弛操作之后,就得到了所有顶点的最短路径(表格中红字部分)。

=========================================================================

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨漓映江

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值