【自用】机器学习相关题目整理

【AI算法岗面试八股面经【超全整理】——机器学习】_人工智能八股-CSDN博客 在此基础上总结

一、MSE和MAE

  1. MSE(L2损失):优点为自适应调节梯度,即使固定学习率,函数也能较快收敛到最小值。
  2. MAE(L1损失):优点为对于离群点,惩罚力度适中,不会像MSE一样平方损失导致调节过度。

二、最小二乘法

最小化误差平方的和,对参数求导令其为零。

三、线性模型处理预测任务vs二分类任务

  1. 预测任务使用线性回归y=wx+b,利用最小二乘法、极大似然法学得一个线性模型,配合一个单调可微的g(.)可发散为广义线性模型。
  2. 二分类任务使用对数几率回归y=1/1+e^(-z),利用极大似然法学得一个线性模型,这其实就是一个广义线性模型,其中g(.)=ln(y/(1-y))。

四、过拟合、欠拟合

如何判断过拟合or欠拟合:若在训练集上表现非常好但是在测试集上表现差则是过拟合,若在训练集和测试集上表现都差就是欠拟合 

五、深拷贝

import copy

original_list = [[1, 2], [3, 4]]
deep_copied_list = copy.deepcopy(original_list)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值