一、MSE和MAE
- MSE(L2损失):优点为自适应调节梯度,即使固定学习率,函数也能较快收敛到最小值。
- MAE(L1损失):优点为对于离群点,惩罚力度适中,不会像MSE一样平方损失导致调节过度。
二、最小二乘法
最小化误差平方的和,对参数求导令其为零。
三、线性模型处理预测任务vs二分类任务
- 预测任务使用线性回归y=wx+b,利用最小二乘法、极大似然法学得一个线性模型,配合一个单调可微的g(.)可发散为广义线性模型。
- 二分类任务使用对数几率回归y=1/1+e^(-z),利用极大似然法学得一个线性模型,这其实就是一个广义线性模型,其中g(.)=ln(y/(1-y))。
四、过拟合、欠拟合
如何判断过拟合or欠拟合:若在训练集上表现非常好但是在测试集上表现差则是过拟合,若在训练集和测试集上表现都差就是欠拟合
五、深拷贝
import copy
original_list = [[1, 2], [3, 4]]
deep_copied_list = copy.deepcopy(original_list)