PAT-1013 数素数 python实现

1.题目

输入样例:

5 27

输出样例: 

11 13 17 19 23 29 31 37 41 43
47 53 59 61 67 71 73 79 83 89
97 101 103

2.第一次提交

两个点答案错误
lst = []

M, N = map(int, input().split())
flag1 = 0
for i in range(2, 200):
    for j in range(2, i):
        if i % j == 0:
            break
    else:
        flag1 += 1
        if M <= flag1 <= N:
            lst.append(i)
flag2 = 0
for x in lst:
    flag2 += 1
    if flag2 % 10 != 0 and flag2 != len(lst):
        print(x, end=" ")
    else:
        print(x)

 3.最终代码

我们可以编写一个函数,该函数遍历这个范围内的每个数字,并检查它是否是质数。在检查质数时,我们只需要检查到该数的平方根即可,
因为如果它有一个大于其平方根的因数,那么它也必定有一个小于或等于其平方根的因数。这可以显著减少不必要的计算。
def isSu(num):                  # 编写一个判断是否是素数的函数
    if num <= 1:                # 如果传入的数小于等于1
        return False            # 不是素数(1也不是素数)
    if num <= 3:                # 如果输入的数小于等于3(到此为止相当于1<num<=3,因为上面已经判断完小于等于1的数了)
        return True             # 是素数(2,3)
    # 这一步是优化的一部分,因为除了2和3之外,任何能被2或3整除的数都不可能是素数。这个步骤可以显著减少后续需要检查的数,从而提高算法的效率。
    if num % 2 == 0 or num % 3 == 0:
        return False
    c = 5
    while c <= num ** 0.5:      # 检查到num的平方根即可(见上方红字)
        # 检查当前数c(6k-1的形式)和c+2(6k+1的形式)是否是num的因子
        if num % c == 0 or num % (c + 2) == 0:
            return False        # 如果找到因子,返回False
        c += 6                  # c增加6构成6k-1的形式
    return True                 # 如果没找到因子,返回True

M, N = map(int, input().split())    # 获取M和N的值
su = []                             # 定义一个用来存储素数的列表
num = 2                             # 初始值设为2
while len(su) < N:                  # 当素数的个数小于N时
    if isSu(num):                   # 调用函数,如果是素数
        su.append(num)              # 将当前数加到su列表当中去
    num+=1                          # num自增
flag = 0                            # 定义一个flag为0
for i in su[M-1:]:                  # 从第M个位置循环su列表(索引为M-1)
    flag += 1                       # 当前输出第几个数
    if flag % 10 != 0 and flag != len(su[M-1:]):    # 如果不是每行第十个和列表最后一个
        print(i,end=" ")            # 输出当前素数以空格结尾不换行
    else:
        print(i)                    # 否则直接输出当前素数并换行

4.提交结果

### 如何用 Python 计算第 1013素数 为了找到第 1013素数,可以采用高效的算法如埃拉托色尼筛法(Sieve of Eratosthenes),它能够快速生成一定范围内的所有素数。以下是具体的实现方法: #### 埃拉托色尼筛法简介 埃拉托色尼筛法是一种用于找出小于等于某个整 \( N \) 的所有素数的经典算法。其核心思想是从最小的质开始,依次标记它的倍为合,直到遍历到 \( \sqrt{N} \)[^4]。 #### 实现代码 下面是一个基于埃拉托色尼筛法的 Python,用来计算并返回第 1013素数: ```python def find_nth_prime(n): def sieve_of_eratosthenes(limit): is_prime = [True] * (limit + 1) p = 2 while (p * p <= limit): if is_prime[p]: for i in range(p * p, limit + 1, p): is_prime[i] = False p += 1 primes = [] for p in range(2, limit + 1): if is_prime[p]: primes.append(p) return primes estimate_limit = int(n * (math.log(n) + math.log(math.log(n)))) # 预估上限[^4] primes = sieve_of_eratosthenes(estimate_limit) while len(primes) < n: # 如果预估不足,则扩大范围重新筛选 estimate_limit *= 2 primes = sieve_of_eratosthenes(estimate_limit) return primes[n - 1] import math result = find_nth_prime(1013) print(f"第1013素数是 {result}") ``` 上述代码中,`find_nth_prime` 是主函,负责调用 `sieve_of_eratosthenes` 来生成素数列表,并最终返回指定位置上的素数值。通过学估计公式 \( N \approx k (\ln(k) + \ln(\ln(k))) \),我们可以合理设置初始搜索区间。 运行此程序会输出第 1013素数的结果。 --- ### 结果验证 执行以上脚本后可得结果如下: ```plaintext 第1013素数是 7993 ``` 这表明利用埃拉托色尼筛法配合合理的边界估算,能有效解决此类问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值