环境准备
主机 | 类型 | 密码 | ip |
master | 主节点 | root | 192.168.169.130 |
slave1 | 从节点 | root | 192.168.169.128 |
slave2 | 从节点 | root | 192.168.169.129 |
本文所展示的内容都是基于Xshell终端模拟软件,也可以使用SecureCRT终端模拟
介绍
1.hadoopHA的概念及应用场景:
Hadoop HA(High Availability)是指在Hadoop集群中,通过部署高可用性架构来保证系统的高可用性。Hadoop HA的关键在于实现NameNode的高可用性,保证整个集群的文件系统稳定性。Hadoop中的主备模型中,主节点(NameNode)负责管理和维护整个集群的文件系统和数据,备节点(Secondary NameNode)则完成主节点的备份和辅助工作,用于保障系统的可靠性。在Hadoop HA架构中,主节点会有多个备份节点,这些备份节点可以自动切换到主节点的身份,当主节点发生故障时,保证系统的高可用性。Hadoop HA的应用场景主要是针对大规模的数据存储和处理,以及涉及到关键业务的场景。当系统中存在大量的数据存储和处理需求时,出现故障将会对系统运作带来致命影响。此时采用Hadoop HA可以保障系统的可靠性和高可用性。同时,在涉及到关键业务的场景中,故障和文件系统出现问题等都将不可接受,因此更需要考虑Hadoop HA的部署和应用。
2.hadoop工作原理:
数据存储:Hadoop将大文件分割成多个小块,称之为数据块。这些数据块会被存储到集群中的不同计算节点上,以实现数据的分布式存储。
计算:Hadoop使用MapReduce计算框架来实现数据处理。MapReduce会将数据块从存储节点移动到计算节点,然后将处理结果返回到存储节点。通过这种方式,可以同时运行多个任务,提高计算效率。
故障容错:Hadoop使用数据冗余和备份机制来保证系统的故障容错性。分布式文件系统中,每个数据块都会有多个备份,保证即使存储节点出现故障,数据也能够被恢复。
集群管理:Hadoop使用ZooKeeper来实现分布式的协调和管理。ZooKeeper负责管理Hadoop集群的配置信息、服务发现和状态变化通知等。它使得Hadoop集群能够实现自我恢复和管理。
IP配置
1.查看机器的ip配置
ip a
2.修改ip配置,ens33
vi /etc/sysconfig/network-scripts/ifcfg-ens33
注:网络连接方式选择net连接,BOOTPROTO=dhcp,下面加入IP,子网掩码,网关,DNS1,DNS2 ,IP地址要与网关处于同一网段内,DNS1与网关相同即可,子网掩码,DNS2可照搬
3.重启网卡
systemctl restart network
4.关闭防火墙
systemctl stop firewalld.service
关闭防火墙自启
systemctl disable firewalld.service
查看防火墙状态
systemctl status firewalld.service
5.ping内外网检查
ping 192.168.169.128
ping www.baidu.com
设置计算机名和主机映射
1.设置计算机名
hostnamectl set-hostname new hostname
bash
new hostname为新的计算机名,bash立即生效
2.设置主机映射
vi /etc/hosts
分别配置每个主机的IP ,可通过ssh传输到slav1和slave2
scp /etc/hosts root@slave1:/etc/hosts
scp /etc/hosts root@slave2:/etc/hosts
SSH免密
在主机master下的root用户进行
1.设置master免密
ssh-keygen -t rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
2. 远程登录slave1.slave2
分别在slave1,2创建.ssh文件夹
mkdir .shh
密钥传输在master主机
scp~/.ssh/id_rsa.pub root@slave1:~/.ssh
scp~/.ssh/id_rsa.pub root@slave2:~/.ssh
slave1:cat ~/.ssh/id_rsa/pub >> ~/.ssh/authorized_keys
slave2:cat ~/.ssh/id_rsa/pub >> ~/.ssh/authorized_keys
环境部署
一,jdk
1.解压 jdk 到 /usr/local/java
tar -zxvf jdk1.8.0_221.tar.gz -C /usr/local/src/
2.配置环境变量
vi /etc/profile
export JAVA_HOME=/usr/local/java/jdk1.8.0_341
export PATH=$PATH:$JAVA_HOME/bin
3.生效环境变量
source /etc/profile
4.查看java版本
java -version
二、安装hadoop环境
1.解压hadoop到/usr/local/src
tar -zxvf hadoop-2.7.7.tar.gz -C /usr/local/src
重命名:mv /usr/local/src/hadoop-2.7.7.tar.gz /usr/local/src/hadoop
2.配置环境变量
vi /etc/profile
#HADOOP_HOME
export HADOOP_HOME=/usr/local/src/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
3.生效配置文件
source /etc/profile
4.查看版本
hadoop version
三、安装zookeeper及配置
1.解压
tar -zxvf zookeeper-3.4.8.tar.gz -C /usr/local/src
重命名:mv /usr/local/zookeeper-3.4.8.tar.gz -C /usr/local/zookeeper
2.新建data和logs目录,为配置文件做准备
mkdir /usr/local/zookeeper/data
mkdir /usr/local/zookeeper/logs
3.配置环境(本人当时配置时没有重命名)
vi /etc/profile
#ZOOKEEPER_HOME
export ZK_HOME=/usr/local/zookeeper/zookeeper-3.4.8
export PATH=$PATH:$ZK_HOME/bin
生效配置
source /etc/profile
修改zoo.cffg文件
cd /usr/local/zookeeper/conf
cp zoo_sample.cfg zoo.cfg
vi zoo.cfg
修改
dataDir=/usr/local/zookeeper/data
增加
dataLogDir=/usr/local/zookeeper/logs
server.1=master:2888:3888
server.2=slave1:2888:3888
server.3=slave2:2888:3888
cd data
增加值为1
vi myid
4.集群分发
scp -r /etc/profile slave1:/etc/profile
scp -r /etc/profile slave2:/etc/profile
scp -r /usr/local/zookeeper slave1:/usr/local/
scp -r /usr/local/zookeeper slave2:/usr/local/
5.修改slave1,2的myid值分别为2,3
vi /usr/local/zookeeper/data/myid
6.创建如下目录,配合后面的配置文件
mkdir /usr/local/src/hadoop/tmp
mkdir /usr/local/src/hadoop/logs
mkdir /usr/local/src/hadoop/tmp/journal
mkdir /usr/local/src/hadoop/tmp/data
mkdir /usr/local/src/hadoop/tmp/name
7.进入hadoop配置文件
cd /usr/local/src/hadoop/etc/hadoop
8.配置hadoop.env.sh文件
export JAVA_HOME=/usr/local/java/jdk1.8.0_341
9.配置core-site.xml(注意更换自己的安装位置)
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/usr/local/src/hadoop/tmp</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>master:2181,slave1:2181,slave2:2181</value>
</property>
<property>
<name>ha.zookeeper.session-timeout.ms</name>
<value>30000</value>
<description>ms</description>
</property>
<property>
<name>fs.trash.interval</name>
<value>1440</value>
</property>
</configuration>
10.配置hdfs-site.xml
<configuration>
<!-- journalnode 集群之间通信的超时时间 -->
<property>
<name>dfs.qjournal.start-segment.timeout.ms</name>
<value>60000</value>
</property>
<!--指定 hdfs 的 nameservice 为 mycluster,需要和 core-site.xml 中的保持一致
dfs.ha.namenodes.[nameservice id]为在 nameservice 中的每一个 NameNode 设置唯一标示
符。配置一个逗号分隔的NameNode ID列表。这将是被DataNode识别为所有的NameNode。
如果使用"mycluster"作为 nameservice ID,并且使用"master"和"slave1"作为 NameNodes >标
示符 -->
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<!-- mycluster 下面有两个 NameNode,分别是 master,slave1 -->
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>master,slave1</value>
</property>
<!-- master 的 RPC 通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.master</name>
<value>master:8020</value>
</property>
<!-- slave1 的 RPC 通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.slave1</name>
<value>slave1:8020</value>
</property>
<!-- master 的 http 通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.master</name>
<value>master:50070</value>
</property>
<!-- slave1 的 http 通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.slave1</name>
<value>slave1:50070</value>
</property>
<!-- 指定 NameNode 的 edits 元数据的共享存储位置。也就是 JournalNode 列表
该 url 的配置格式:qjournal://host1:port1;host2:port2;host3:port3/journalId
journalId 推荐使用 nameservice,默认端口号是:8485 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://master:8485;slave1:8485;slave2:8485/mycluster</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<property>
<name>dfs.permissions.enabled</name>
<value>/root/.ssh/id_rsa</value>
</property>
<!-- 指定副本数 -->
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/usr/local/src/hadoop/tmp/hdfs/nn</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/usr/local/src/hadoop/tmp/hdfs/dn</value>
</property>
<!-- 指定 JournalNode 在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/usr/local/src/hadoop/tmp/hdfs/jn</value>
</property>
<!-- 开启 NameNode 失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 启用 webhdfs -->
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
<!-- 配置 sshfence 隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
<property>
<name>ha.failover-controller.cli-check.rpc-timeout.ms</name>
<value>60000</value>
</property>
</configuration>
11.配置mapred-sute.xml
拷贝mapred-site.xml.template重命名为mapred-site.xml
cp mapred-site.xml.template mapred-site.xml
vi mapred-site.xml
<configuration>
<!-- 指定 mr 框架为 yarn 方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!-- 指定 mapreduce jobhistory 地址 -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property>
<!-- 任务历史服务器的 web 地址 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property>
</configuration>
12.配置yarn-sute.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<!-- 开启 RM 高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定 RM 的 cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定 RM 的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定 RM 的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>master</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>slave1</value>
</property>
<!-- 指定 zk 集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>master:2181,slave1:2181,slave2:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>86400</value>
</property>
<!-- 启用自动恢复 -->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!-- 制定 resourcemanager 的状态信息存储在 zookeeper 集群上 -->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
</configuration>
13.配置slaves文件
vi /usr/local/hadoop/etc/hadoop/slaves
master
slave1
slave2
14.分发hadoop至slave1和slave2
scp -r /usr/local/src/hadoop slave1:/usr/local/
scp -r /usr/local/src/hadoop slave2:/usr/local/
15.分发jdk至slave1和slave2
scp -r /usr/local/java/jdk1.8.0_221/ slave1:/usr/local/src/
scp -r /usr/local/java/jdk1.8.0_221/ slave2:/usr/local/src/
16.确保三台机器配置生效
source /etc/profile
四、HA 集群启动和进程查看
1.启动zookeeper
进入zookeeper安装目录
bin/zkServer.sh start
bin/zkServer.sh status
三台机器都启动
2.进入hadoop安装目录
bin/hdfs zkfc -formatZK
3.启动全部机器的namenode和datanode
hdfs --daemon start namenode
hdfs --daemon start datanode
4.启动hadoop全部进程
sbin/start-all.sh
全部开启之后的jps进程 (开启namenode,datanode,DFSZKFailoverController)
启动yarn,在master上运行
start-yarn.sh
五、修改windows hosts文件
1. C:\Windows\System32\drivers\etc目录下找到hosts文件
2.修改文件可以读写属性
3.增加
192.168.169.130 master master.centos.com
192.168.169.128 slave1 slave1.centos.com
192.168.169.129 slave2 slave2.centos.com
4.在浏览器访问master:50070
访问slave1:50070
hadoopHA所有配置结束,有什么不懂欢迎留言