【大模型技术分享】全方位解读大模型:多样知识点的深度探讨与技术分享小结

        大模型领域非常火热,但是大模型事实上是一个复杂的工程系统,涉及的知识点很多。我们之前针对大模型的底层思想、模型架构、数据预处理、分词器tokenizer、模型微调、人类对齐、部署推理、提示词工程、智能体、检索增强生成、计算加速优化、GPU资源、安全性、生成式模型原理、大模型产品、应用及运营、多模态等分别都有相关的介绍,后续还会进一步补充相关的技术和实践分享,本文主要做一次系统性小结,方便阅读和回溯,具体的分类文章列表如下:

1. 底层思想

压缩泛化-对大语言模型智能涌现的理解

2. 模型架构

Transformer原理及关键模块深入浅出

GPT系列预训练模型原理讲解

基于3D可视化视角理解GPT

LLaMA3结构关键模块分析

关于LLaMA 3.1 405B以及小模型的崛起

通用大模型架构分类及技术统一化

Mixture of Experts(混合专家模型, MOE)

RoPE旋转位置编码底层数学原理分析

RoPE旋转位置编码PyTorch代码分析

精简循环序列模型(minGRU/minLSTM)

大模型时代下Bert去哪啦?

关于Bert的一些实操回顾以及clip-as-service的介绍

进一步认识GLM、ChatGLM

3. 数据清洗及相关技术原理分析

高质量数据过滤及一种BoostedBaggingFilter处理方法的介绍

大模型高质量数据的处理方法之无标注数据类别快速识别及重复数据检测

大模型周边自然语言处理技术(NLP)原理分析及数学推导

(Word2Vec、TextCNN、Gated TextCNN(门控text-cnn)、FastText)

4.分词Tokenization

大模型数据词元化处理tokenization之BPE(Byte-Pair Encoding tokenization)及代码示例》

大模型数据词元化处理之WordPiece分词及代码示例》

大模型分词算法Unigram及代码示例

主流大模型的分词器选择及讨论(BPE/BBPE/WordPiece/Unigram)

构建大模型分词器并应用于Transformer库

5. 模型训练及微调

大模型微调之指令微调

从零构建基座大模型项目推介

6. 人类对齐

大模型中的强化学习RLHF(PPO)、DPO(Direct Preference Optimization)

7. 模型部署及推理

vLLM的由来以及大模型部署、推理加速实践

大模型GPU推理测试

基于开源大模型的问答系统本地部署实战教程

搭建本地的隐私计算知识问答系统“密答”

8. 解码策略

大模型生成之解码策略(涉及束搜索、长度及重复惩罚、温度调节、Top-K及Top-P采样、对比解码、解码策略优化等)

9.大模型评估

大模型能力评估、框架工具、OpenAI Evals、大模型中文评测示例等

10. 提示词工程

创建有效的大模型提示词Prompt(提示词工程)

思维链(Chain Of Thought)、思维树(Tree Of Thought)等概念解析

11. 智能体

强化学习RL与大模型智能体

12. 检索增强生成

1.《大模型LLM在垂直领域的应用(RAG、微调等)分析

2.《Agentic RAG(智能体RAG) 以及Multi-Source RAG(多数据源RAG)

3.《ToB的大模型系统非常有必要引入搜索推荐算法能力

    (回顾BPR、W&D、DeepFM、ALS等经典算法)

4.《Learn to Rank排序算法(Listwise Learning-to-Rank)

13. 模型压缩

大模型压缩技术之注意力层剪枝以及与MLP层联合剪枝

模型蒸馏、大模型变小、移动端小规模大模型SLM、小模型趋势讨论

深度学习模型知识蒸馏Torch实践

14. 计算加速优化

Transformer KV Cache原理深入浅出

自注意力机制计算加速工程优化技巧

15. GPU资源

大模型显存资源计算以及GPU如何选择

16. 安全性

大模型的安全由隐私计算来保护

MPC安全多方计算矩阵乘法算子的原理分析及模型推理应用介绍

基于开源隐私计算框架的的VisionTransformer框架

17. 生成式模型原理分析

生成式模型算法原理深入浅出

(涉及Stable Diffusion、生成对抗网络、高斯混合模型、隐马尔可夫模型、朴素贝叶斯等算法原理分析及生成式模型解释)

生成式模型与判别式模型对比

18. 大模型无代码编程应用

基于大模型零代码1小时完成国标数据分级分类近义词库构建及思考

19. 大模型产品及运营

用于构建围绕 LLM 的成功产品的实用指南

构建成功LLM应用的运营方面实践分享

20. 向量搜索引擎

高效的向量搜索算法——分层可导航小世界图(HNSW)

21. 多模态

MoneyPrinterTurbo项目初探

22. 大模型周边技术及练习

deep-ml项目深度学习关键模块代码练习题库及部分题目解法的分析

大模型相关的周边技术分享-关于《NN and DL》的笔记

23. 基于GLM大模型的实践

基于大模型GLM的Function Call实践

基于大模型GLM的检索增强实践

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源泉的小广场

感谢大佬的支持和鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值