【大模型周边篇】深度学习模型知识蒸馏Torch实践 知识蒸馏、大模型、模型蒸馏、模型减小、logits 知识蒸馏、特征图知识蒸馏、hint 知识蒸馏、teacher-student kd model、师生架构
【大模型理论篇】模型蒸馏、大模型变小、移动端小规模大模型SLM、小模型趋势讨论 大模型、大模型蒸馏、知识蒸馏、小模型压缩、大模型尺寸、边缘部署、小模型推理、小模型性能、SLM、知识、logits、软目标、师生模型、teacher-student model、gemma、量化蒸馏、自然语言处理、基于响应知识蒸馏、基于特征知识蒸馏、基于关系知识蒸馏
【大模型理论篇】大模型能力评估、框架工具、评估指标、OpenAI Evals、大模型中文评测示例等 大模型评估、大模型测评、大模型能力评测、大模型评估框架、大模型评估工具、open ai evals、大模型中文评估、分类能力、阅读理解能力、知识抽取能力、表格数据理解能力
【隐私计算篇】全同态加密应用场景案例(隐私云计算中的大模型推理、生物识别等) 隐私计算、全同态、全同态加密、大模型、全流程加密、密算云、全流程密算、全匿踪、端云协同、隐私云、隐私云计算、生物识别、基因数据、医疗隐私、隐私计算应用案例
【大模型理论篇】大模型压缩技术之注意力层剪枝以及与MLP层联合剪枝 大模型、压缩、大模型压缩、量化、剪枝、注意力层冗余、注意力层丢弃、mlp层、attention层、冗余分析、相似度度量、加速比、块丢弃、大模型提速、减少参数
【大模型实战篇】构建大模型分词器并应用于Transformer库 大模型、分词器、构建分词器、从零构建分词器、tokenizer、BPE、WordPiece、Unigram、实战、Transformer、huggingface、编码器、解码器
【大模型理论篇】主流大模型的分词器选择及讨论(BPE/BBPE/WordPiece/Unigram) 大模型、分词器、分词、tokenizer、BPE、BBPE、wordpiece、词元化、unigram、sentencepiece、词粒度、tiktoken、主流大模型分词器、gpt分词器、gpt tokenizer
【大模型实战篇】大模型分词算法WordPiece分词及代码示例 大模型、数据预处理、tokenize、分词、词元化、标记化、word piece、bert、wordpiece-bpe差异、bpe、词对得分
【大模型实战篇】大模型分词算法BPE(Byte-Pair Encoding tokenization)及代码示例 大模型、数据预处理、词元化、Tokenization、分词、子词分词器、BPE分词、字节级BPE、Byte-Pair Encoding tokenization、GPT-2、特殊词元、合并规则学习
【大模型理论篇】大模型生成之解码策略(涉及束搜索、长度及重复惩罚、温度调节、Top-K及Top-P采样、对比解码、解码策略优化等) 贪心搜索、概率采样、束搜索、长度惩罚、重复惩罚、温度调节、Top-K采样、Top-P采样、对比解码、解码策略优化、非自回归解码、早退机制、级联解码、推测解码
【大模型技术分享】全方位解读大模型:多样知识点的深度探讨与技术分享小结 底层思想、模型架构、数据清洗、数据预处理、分词、模型微调、人类对齐、部署推理、提示词工程、智能体、检索增强生成、计算加速优化、GPU资源、安全性、生成式模型原理、大模型产品、应用及运营、多模态
【大模型理论篇】思维链(Chain Of Thought)、Auto-CoT、 Diverse Prompts、思维树(Tree Of Thought)、思维树提示语等概念解析及相应提示语示例 提示语、大模型、llm、提示语工程、cot、tot、chain of thought、tree of thought、思维链、思维树、推理链
【大模型理论篇】大模型中的强化学习RLHF(PPO)、DPO(Direct Preference Optimization)等概念的理解与解析 大模型、大模型预训练、大模型对齐、人类对齐、RLHF、强化学习、ppo、dpo、近端策略优化、直接偏好优化、Human Alignment、Direct Preference Optimization、Proximal Policy Optimization
【隐私计算篇】替换半同态使用全同态加速计算联邦机器学习算法的实证分析以及性能对比 隐私计算、联邦学习、计算性能优化、全同态加密、半同态加密、tenseal、seal、ckks、zpaillier、gpaillier、gpu-paillier、gpu硬件加速、联邦逻辑回归、联邦示例代码
【隐私计算篇】使用GPU加速计算联邦学习XGBOOST算法以及对NVIDIA FLARE(NVIDIA 联邦学习应用运行环境)的介绍 联邦学习、联邦xgboost、隐私计算、nvidia flare、英伟达、gpu加速、gpu加速密文、硬件加速、联邦加速、联邦计算、联邦学习框架、横向联邦、纵向联邦
【隐私计算篇】一种批量匿踪查询友好算法PIRANA的原理分析 PIRANA、pirana、隐私计算、匿踪查询、批量匿踪查询、batch-pir、隐私信息检索、隐私信息查询、定权码、constant weight codes、cw、概率批处理码、PBC、probabilistic batch codes、label-psi、pirana-lpsi、bfv同态加密、全同态加密、密文旋转
【大模型理论&实战篇】Agentic RAG(智能体RAG) 以及Multi-Source RAG(多数据源RAG)等关于RAG技术的新进展及Function Calling示例 RAG、Agentic RAG、Multi-source RAG、MSRAG、智能体、智能体RAG、代理RAG、检索增强生成、多数据源RAG、多源数据RAG、function calling、工具agent、大模型、智能rag
【大模型实战篇】创建有效的大模型提示词Prompt(提示词工程) 大模型、提示词、提示词工程、LLM、prompts、有效提示词、好的提示词、提示词关键要素、思维链、提示链、上下文、few shots learning