农夫约翰出门沿着马路散步,但是他现在发现自己可能迷路了!
沿路有一排共 N 个农场。
不幸的是农场并没有编号,这使得约翰难以分辨他在这条路上所处的位置。
然而,每个农场都沿路设有一个彩色的邮箱,所以约翰希望能够通过查看最近的几个邮箱的颜色来唯一确定他所在的位置。
每个邮箱的颜色用 A..Z 之间的一个字母来指定,所以沿着道路的 N个邮箱的序列可以用一个长为 N 的由字母 A..Z 组成的字符串来表示。
某些邮箱可能会有相同的颜色。
约翰想要知道最小的 K 的值,使得他查看任意连续 K个邮箱序列,他都可以唯一确定这一序列在道路上的位置。
例如,假设沿路的邮箱序列为 ABCDABC 。
约翰不能令 K=3=3,因为如果他看到了 ABC,则沿路有两个这一连续颜色序列可能所在的位置。
最小可行的 K 的值为 K=4 ,因为如果他查看任意连续 44 个邮箱,那么可得到的连续颜色序列可以唯一确定他在道路上的位置。
输入格式
输入的第一行包含 N,第二行包含一个由 N 个字符组成的字符串,每个字符均在 A..Z 之内。
输出格式
输出一行,包含一个整数,为可以解决农夫约翰的问题的最小 K 值。
数据范围
1≤N≤100
输入样例:
7
ABCDABC
输出样例:4
思路:此题要我们找最长不充分子串的长度因为答案具有二段性因此能够将 答案以二分的方式带入到check函数中 ,将1- n 的长度值依次枚举 存入字符串哈希表中 ,判断是否重复 。
枚举时间复杂度为 O(n) , 而二分时间复杂度为O(log(n)) ,因此总的事件复杂度为 n*log(n)级别
4
#include<iostream>
#include<algorithm>
#include<unordered_set>
using namespace std;
int n;
string s;
unordered_set<string> hash;
bool check(int mid){
for(int i=0;i+mid-1<s.size();i++){
auto si = s.substr(i,mid); //取出从i开始 长度为mid的子串
if(hash.count(si)) return false;
hash.insert(si);
}
return true;
}
int main(){
cin>>n;
cin>>s;
int l = 1,r = n;
while(l<r){
int mid = l+r>>1;
if(check(mid)) r = mid;
else l = mid+1;
}
cout<<r<<endl;
return 0;
}
文章描述了一个关于字符串序列的问题,农夫约翰试图通过邮箱颜色序列确定位置。最小的K值需保证查看连续K个邮箱颜色能唯一确定位置。解决方案是使用二分查找配合哈希表,检查不同长度的子串是否唯一,找到满足条件的最小K值。
3371

被折叠的 条评论
为什么被折叠?



