【EKF实现2维平面上的SLAM】【EKF-SLAM】NWPU 最优估计课程设计(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、文档讲解


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

  • 运动更新

运动更新时,固定点坐标不变,所以只需要根据运动方程更新(x,y,α)及其协方差与互协方差即可。

  • 观测到曾经观测过的固定点

这时候依次对观测到的特征点信息进行EKF更新

Landmark observations are processed in the EKF usually one-by-one
  • 观测到新的固定点

这时候观测到新的固定点,需要进行状态增广。根据逆观测方程,使用观测信息推测出新加的增广状态均值与方差,然后加入到总体的状态与协方差矩阵中。

文章目录:

同时定位与建图(SLAM)的本质是一个估计问题,它要求移动机器人利用传感器信息实

时地对外界环境结构进行估计,并且估算出自己在这个环境中的位置,Smith 和 Cheeseman

在上个世纪首次将 EKF 估计方法应用到 SLAM。

以滤波为主的 SLAM 模型主要包括三个方程:

1)运动方程:它会增加机器人定位的不确定性

2)根据观测对路标初始化的方程:它根据观测信息,对新的状态量初始化。

3)路标状态对观测的投影方程:根据观测信息,对状态更新,纠正,减小不确定度。

详细文档见第4部分。

📚2 运行结果

  • 传感器探测范围与路标点

  • 第一次状态增广
  • 状态持续扩大
  • 状态增广已停止

部分代码:

% 运动噪声
q = [0.01;0.01];
Q = diag(q.^2);
% 测量噪声
m = [.15; 1*pi/180];
M = diag(m.^2);

% R: 机器人初始位置
% u: 控制量
R = [0;-2.2;0];
u = [0.1;0.05];

% 设置外界路标点环境
% 环形摆放的landmarks
% W: 设置所有路标点位置
jiaodu_perLandMark =6;  %取1,3,6,15,30,60...(360的倍数均可)
r1=2;
r2=3;
r3=3.5;
W = landmarks(r1,r2,r3,jiaodu_perLandMark);

% 传感器探测半径
sensor_r = 2.5;

% Id容器用来判别当前探测到的路标点曾经是否被观测过;若没有观测过,那么此时需要将其加入Id容器。
% 这里使用W中每个点的索引作为路标点的id;Id初始化为一个足够大的零数组即可。
% Id(类型)==1,表示曾经观测过;Id(类型)==0,表示曾经没有观测过。
% 如果用c++实现,建议使用map结构。
Id = zeros(1,size(W,2));

% y_news表示当前新探测到的路标点,y_news(:,i)记录观测量和路标点类型
% 同理y_olds
y_olds = zeros(3,size(W,2));
y_news = zeros(3,size(W,2));

%   状态量及协方差初始化
x = zeros(numel(R)+numel(W), 1);
P = zeros(numel(x),numel(x));

% id_to_x_map:id------>>>id对应的状态变量在x中的位置
id_to_x_map = zeros(1,size(W,2));

% x和P初始化
r = [1 2 3];
x(r) = R;
%x(r) = [8;-2.5;0];
P(r,r) = 0;

% 每次状态增广在x中的位置
s = [4 5];

%主循环次数
% 125/每圈
 loop =250;
 
% 存放位姿仿真量
poses_ = zeros(3,loop);

% 存放位姿历史估计量
poses = zeros(3,loop);

 %  绘图
mapFig = figure(1);
cla;
axis([-5 5 -5 5])
axis square
%axis equal
% 所有路标点
WG = line('parent',gca,...
    'linestyle','none',...
    'marker','.',...
    'color','m',...
    'xdata',W(1,:),...
    'ydata',W(2,:));
% 仿真下机器人位置
RG = line('parent',gca,...
    'marker','+',...
    'color','r',...
    'xdata',R(1),...
    'ydata',R(2));
% 估计的机器人位置
rG = line('parent',gca,...
    'linestyle','none',...
    'marker','+',...
    'color','b',...
    'xdata',x(r(1)),...
    'ydata',x(r(2)));
% 估计的路标点位置
lG = line('parent',gca,...
    'linestyle','none',...
    'marker','+',...
    'color','k',...
    'xdata',[],...
    'ydata',[]);

% 估计的路标点协方差
eG1 = zeros(1,size(W,2));
for i = 1:numel(eG1)
    eG1(i) = line(...
        'parent', gca,...
        'color','k',...
        'xdata',[],...
        'ydata',[]);
end

% 估计的机器人位置
reG = line(...
    'parent', gca,...
    'color','r',...
    'xdata',[],...
    'ydata',[]);

% 传感器探测范围(以真实位置为圆心)
sensor1 = line(...
    'parent', gca,...
    'color','m',...
    'xdata',[],...
    'ydata',[],...
    'LineStyle','--');
sensor2 = line(...
    'parent', gca,...
    'color','m',...
    'xdata',[],...
    'ydata',[],...
    'LineStyle','--');

%传感器探测范围(以估计位置为圆心)
Sensor1 = line(...
    'parent', gca,...
    'color','m',...
    'xdata',[],...
    'ydata',[],...
     'LineStyle','--');
 Sensor2 = line(...
    'parent', gca,...
    'color','m',...
    'xdata',[],...
    'ydata',[],...
     'LineStyle','--');

 true_pose = line(...
    'parent', gca,...
    'color','r',...
    'xdata',[],...
    'ydata',[],...
    'LineWidth',0.8);
     %'LineStyle','--');
 
 estimate_pose = line(...
    'parent', gca,...
    'color','b',...
    'xdata',[],...
    'ydata',[],...
    'LineWidth',0.8);
    % 'LineStyle','--');
 
 % II. 主循环;
 % 机器人每前进一步,循环一次
for t = 1:loop
%     if t == 125
%         u(1) = 0.2;
%         sensor_r = 4;
%     end
%     if t == 375
%         u(1) = 0.2;
%         sensor_r = 5;
%     end
    %不同探测半径

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、文档讲解

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 24
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
EKF-SLAM(Extended Kalman Filter SLAM)是一种基于扩展卡尔曼滤波器的SLAM算法,可以实现同时定位和建图。以下是使用C++实现EKF-SLAM的基本步骤: 1. 定义状态向量和观测向量 在EKF-SLAM中,状态向量包括机器人的位姿和地图中的特征点位置。观测向量包括机器人的传感器测量值和地图中已知的特征点位置。 2. 初始化协方差矩阵和状态向量 协方差矩阵表示状态变量不确定性的度量,初始时应设置为较大的值,以便在后续更新过程中逐渐收敛。状态向量的初始值可以从机器人的传感器数据中估计出来。 3. 实现运动模型 运动模型用于估计机器人的位姿随时间的变化。常见的运动模型包括里程计模型和惯性导航模型。 4. 实现观测模型 观测模型用于预测机器人观测到的特征点位置。常见的观测模型包括单个特征点的距离或角度测量值,以及多个特征点的距离或角度测量值。 5. 实现EKF算法 EKF算法用于更新状态向量和协方差矩阵。在每个时间步骤中,先使用运动模型预测下一个状态向量和协方差矩阵,然后使用观测模型将当前状态向量和协方差矩阵更新为最新的估计值。 6. 更新地图 当机器人观测到新的特征点时,应该将这些点添加到地图中。可以使用一些技术来确定新观测到的特征点是否已经在地图中存在,例如最近邻搜索或图像配准。 7. 重复执行步骤3-6,直到SLAM问题收敛。 以上是使用C++实现EKF-SLAM的基本步骤,但实现过程中需要深入了解卡尔曼滤波器理论和SLAM算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值