【多变量输入单步预测】基于减法优化器算法(SABO)优化CNN-BiLSTM-Attention的风电功率预测研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、技术原理与模型结构

1. 减法优化器算法(SABO)

2. CNN-BiLSTM-Attention模型

三、研究步骤

四、预期成果与应用

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于减法优化器算法(SABO)优化CNN-BiLSTM-Attention的风电功率预测研究是一个结合了多种先进技术的复杂课题,旨在通过优化深度学习模型的参数配置,提高风电功率预测的准确性。以下是对该研究的详细分析:

一、研究背景与意义

风电作为一种重要的可再生能源,其功率输出受多种因素影响,如风速、风向、温度、湿度等,具有高度的不确定性。准确预测风电功率对于电力系统的调度、规划和运行至关重要,可以有效提高能源利用效率,减少化石能源依赖。然而,传统的预测方法难以全面捕捉风电功率的复杂性和不确定性,因此,开发高效、准确的预测模型成为迫切需求。基于减法优化器算法(SABO)优化CNN-BiLSTM-Attention模型的风电功率预测方法,通过优化模型参数,提高预测精度,具有重要的研究意义和应用价值。

二、技术原理与模型结构

1. 减法优化器算法(SABO)

减法优化器算法(SABO)是一种基于数学行为的智能优化算法,具有寻优能力强、收敛速度快等特点。该算法通过迭代地执行减法平均操作来更新搜索个体的位置,从而找到问题的最优解。在风电功率预测中,SABO算法可以用于优化CNN-BiLSTM-Attention模型的参数,如学习率、隐藏层节点数等,以提高模型的预测性能。

2. CNN-BiLSTM-Attention模型

CNN-BiLSTM-Attention模型结合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的优点,形成了一个强大的深度学习架构。该模型能够同时捕捉风电功率数据的空间特征、时间序列特征以及关键特征,从而提高预测精度。

  • CNN层:用于提取风电功率数据的空间特征,如风速、风向等气象数据的局部特征信息。
  • BiLSTM层:用于捕获时间序列数据中的长期依赖关系,同时考虑前后文信息,提高模型对风电功率变化趋势的预测能力。
  • Attention层:用于识别关键特征,对输入信息进行加权处理,使模型更加关注对预测结果影响较大的特征,进一步提高预测精度。

三、研究步骤

  1. 数据预处理:收集风电场的气象数据(如风速、风向、温度、湿度等)和功率输出数据,并进行清洗、归一化等预处理操作,以确保数据的质量和一致性。
  2. 模型构建:构建CNN-BiLSTM-Attention模型,并设置初始参数。
  3. 参数优化:利用减法优化器算法(SABO)对CNN-BiLSTM-Attention模型的参数进行优化。通过迭代地执行减法平均操作,不断调整模型参数,以找到最优解。
  4. 模型训练:使用预处理后的风电功率数据对模型进行训练,通过反向传播算法更新网络参数,使预测结果逼近实际的风电功率。
  5. 模型评估:使用测试集对训练好的模型进行评估,计算预测误差(如均方根误差RMSE、平均绝对误差MAE等)来评估模型的预测精度。

四、预期成果与应用

通过基于减法优化器算法(SABO)优化CNN-BiLSTM-Attention模型的风电功率预测研究,预期能够显著提高风电功率预测的准确性和效率。该研究成果可以应用于电力系统的调度、规划和运行中,为风电场的运行管理提供可靠依据。同时,该研究方法也可以拓展到其他领域的时间序列预测问题中,具有广泛的应用前景。

五、结论与展望

本研究提出了一种基于减法优化器算法(SABO)优化CNN-BiLSTM-Attention模型的风电功率预测方法,并通过实验验证了其有效性。未来研究可以进一步探索更加有效的特征提取方法和优化算法,以进一步提升风电功率预测的精度和稳定性。同时,也可以关注风电功率预测在智能电网、能源管理等领域的应用拓展,推动可再生能源的可持续发展。

📚2 运行结果

采用前10个样本的所有特征,去预测下一个样本的发电功率。

部分代码:


layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    bilstmLayer(25,'Outputmode','last','name','hidden1') 
    selfAttentionLayer(1,2)          %创建一个单头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]王彦快,孟佳东,张玉,等.基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究[J].铁道科学与工程学报, 2024, 21(7).

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011, 35(12):20-26.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值