包括UGV和UAV在内的异构混合阶多智能体系统的一致性[动态和静态](Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、系统描述与预备知识

三、一致性协议设计

四、稳定性分析

五、研究成果与应用

六、结论与展望

📚2 运行结果

2.1 动态结果

2.2 静态结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、研究背景与意义

异构混合阶多智能体系统由不同阶数的智能体组成,如二阶的UGV和高阶的UAV。这类系统在执行复杂任务时具有显著优势,如协同作战、编队飞行等。一致性问题作为多智能体系统协调运行的基础,对于异构混合阶系统同样至关重要。只有当智能体的个体状态达成一致时,它们才能进一步聚集和合作,完成共同任务。

二、系统描述与预备知识

  1. 系统描述

    • 异构混合阶多智能体系统由不同阶数的智能体组成,每个智能体具有自己的动力学模型。
    • 智能体之间通过通信网络进行信息交换,形成复杂的网络拓扑结构。
  2. 预备知识

    • 图论:用于描述智能体之间的通信关系,拉普拉斯矩阵是图论中的重要工具。
    • 控制理论:用于设计一致性协议,使智能体的状态趋于一致。
    • 稳定性分析:用于评估系统在一致性协议下的稳定性。

三、一致性协议设计

  1. 动态一致性协议

    • 针对异构混合阶系统的特点,设计一种能够适应不同阶数智能体的一致性协议。
    • 该协议需要考虑智能体的动力学模型、通信网络拓扑以及时延等因素。
    • 通过调整协议参数,使智能体的状态在动态变化过程中趋于一致。
  2. 静态一致性协议

    • 在某些情况下,智能体的状态可能不需要实时调整,而是需要在某个固定时刻达成一致。
    • 针对这种情况,设计一种静态一致性协议,使智能体在固定时刻的状态趋于一致。
    • 该协议需要考虑智能体的初始状态、通信网络拓扑以及一致性目标等因素。

四、稳定性分析

  1. 理论分析

    • 基于控制理论和稳定性分析方法,对设计的一致性协议进行理论分析。
    • 评估协议在不同条件下的稳定性,包括无时延、有界时延、切换拓扑等情况。
  2. 数值仿真

    • 通过数值仿真验证一致性协议的有效性和稳定性。
    • 仿真结果可以直观地展示智能体状态的变化过程以及最终的一致性状态。

五、研究成果与应用

  1. 研究成果

    • 提出了针对异构混合阶多智能体系统的动态和静态一致性协议。
    • 通过理论分析和数值仿真验证了协议的有效性和稳定性。
  2. 应用前景

    • 异构混合阶多智能体系统的一致性研究在无人系统协同作战、编队飞行、智能交通等领域具有广泛应用前景。
    • 研究成果可以为这些领域的实际应用提供理论指导和技术支持。

六、结论与展望

  1. 结论

    • 本文针对异构混合阶多智能体系统的一致性问题进行了研究,提出了动态和静态一致性协议,并通过理论分析和数值仿真验证了协议的有效性和稳定性。
  2. 展望

    • 未来研究可以进一步考虑智能体的异构性、通信网络的复杂性以及外部干扰等因素对一致性的影响。
    • 同时,可以探索更多类型的一致性协议和算法,以适应不同应用场景的需求。

📚2 运行结果

2.1 动态结果

2.2 静态结果

可视化代码:

%% Draw graphs
subplot(4,2,1, 'Position',[0.02 0.775 0.45 0.20])
plot(time,P1X, time,P2X, time,P3X, time,P4X, time,P5X, 'linewidth',1.5);
legend('P^X_{G1}','P^X_{G2}','P^X_{G3}','P^X_{A1}','P^X_{A2}'); grid on
title("X Positions")

subplot(4,2,3, 'Position',[0.02 0.525 0.45 0.20])
plot(time,V1X, time,V2X, time,V3X, time,V4X, time,V5X, 'linewidth',1.5);
legend('V^X_{G1}','V^X_{G2}','V^X_{G3}','V^X_{A1}','V^X_{A2}'); grid on
title("X Velocities")

subplot(4,2,5, 'Position',[0.02 0.275 0.45 0.20])
plot(time,gtheta4, time,gtheta5, 'linewidth',1.5);
legend('theta_{A1}','theta_{A2}'); grid on
title("X Omega")

subplot(4,2,7, 'Position',[0.02 0.025 0.45 0.20])
plot(time,gdtheta4, time,gdtheta5, 'linewidth',1.5);
legend('dtheta_{A1}','dtheta_{A2}'); grid on
title("X dotOmega")


subplot(4,2,2, 'Position',[0.53 0.775 0.45 0.20])
plot(time,P1Y, time,P2Y, time,P3Y, time,P4Y, time,P5Y, 'linewidth',1.5);
legend('P^Y_{G1}','P^Y_{G2}','P^Y_{G3}','P^Y_{A1}','P^Y_{A2}'); grid on
title("Y Positions")

subplot(4,2,4, 'Position',[0.53 0.525 0.45 0.20])
plot(time,V1Y, time,V2Y, time,V3Y, time,V4Y, time,V5Y, 'linewidth',1.5);
legend('V^Y_{G1}','V^Y_{G2}','V^Y_{G3}','V^Y_{A1}','V^Y_{A2}'); grid on
title("Y Velocities")

subplot(4,2,6, 'Position',[0.53 0.275 0.45 0.20])
plot(time,gphi4, time,gphi5, 'linewidth',1.5);
legend('phi_{A1}','phi_{A2}'); grid on
title("Y Omega")

subplot(4,2,8, 'Position',[0.53 0.025 0.45 0.20])
plot(time,gdphi4, time,gdphi5, 'linewidth',1.5);
legend('dphi_{A1}','dphi_{A2}'); grid on
title("Y dotOmega")
 

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]张文旭,马磊,贺荟霖,等.强化学习的地-空异构多智能体协作覆盖研究[J].智能系统学报, 2018, 13(2):6.

[2]胡秋霞,赵津,肖光飞,等.UAV—UGV协同系统中智能小车的路径规划[J].计算机仿真, 2018, 35(8):5.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值