开篇语
今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。
我是一名后端开发爱好者,工作日常接触到最多的就是Java语言啦,所以我都尽量抽业余时间把自己所学到所会的,通过文章的形式进行输出,希望以这种方式帮助到更多的初学者或者想入门的小伙伴们,同时也能对自己的技术进行沉淀,加以复盘,查缺补漏。
小伙伴们在批阅的过程中,如果觉得文章不错,欢迎点赞、收藏、关注哦。三连即是对作者我写作道路上最好的鼓励与支持!
前言
在上一期中,我们聊到了如何通过合理设计索引和查询优化器提升 MySQL 查询性能。但在实际开发中,当数据量逐渐庞大,进行深度分页查询时,数据库性能瓶颈就会显现出来。深度分页,尤其是 LIMIT m, n 这样的查询,当 m 值较大时,会导致数据库查询时间急剧上升。今天,我们将深入探讨如何优化 MySQL 的 深度分页查询,以高效应对大数据量场景。
摘要
本文主要介绍 MySQL 深度分页导致性能问题的原因,并提出几种常见的优化策略,包括:子查询优化、覆盖索引优化、延迟关联优化 和 缓存结果集 等方法。通过这些策略,可以有效减少深度分页查询的性能开销,提高数据库响应速度。
深度分页性能问题分析
1. 问题背景
分页查询在 MySQL 中通常通过 LIMIT 子句实现,例如:
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
- 这里
LIMIT 10000, 10表示跳过前 10000 条数据,从第 10001 条开始取 10 条数据。 - 当
m值增大时,MySQL 会先扫描并丢弃前m条记录,再返回后续记录,导致性能急剧下降。
2. 问题根源
- 数据量大:跳过的记录无法利用索引直接定位,需要逐行扫描。
- 排序代价高:
ORDER BY会先对数据进行排序,然后再进行分页。
深度分页优化方案
方案一:子查询优化(基于主键定位)
核心思路是利用子查询的主键索引,先定位起始数据行的主键,再进行数据查询。
优化前:
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
优化后:
SELECT *
FROM articles
WHERE id >= (SELECT id FROM articles ORDER BY created_at DESC LIMIT 10000, 1)
ORDER BY created_at DESC
LIMIT 10;
实现原理:
- 子查询快速找到跳过数据的 起始行 主键。
- 外层查询基于主键进行检索,性能显著提升。
优点:
- 避免扫描大量无用数据行。
- 高效利用主键索引。
方案二:覆盖索引优化
覆盖索引是一种 索引列包含所有查询列 的场景,可以避免回表查询,提高性能。
优化前:
SELECT id, title, created_at
FROM articles
ORDER BY created_at DESC
LIMIT 10000, 10;
覆盖索引设计:
ALTER TABLE articles ADD INDEX idx_created_at (created_at, id, title);
优化后:
SELECT id, title, created_at
FROM articles FORCE INDEX(idx_created_at)
ORDER BY created_at DESC
LIMIT 10000, 10;
实现原理:
- 使用覆盖索引时,查询只在索引树上完成,避免回表查询。
FORCE INDEX强制使用覆盖索引,提高查询效率。
优点:
- 大幅减少 IO 操作。
- 提升分页查询速度。
方案三:延迟关联优化
核心思路是先通过索引查询主键列表,再关联主表获取完整数据,减少扫描量。
优化前:
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
优化后:
SELECT a.*
FROM articles a
JOIN (
SELECT id
FROM articles
ORDER BY created_at DESC
LIMIT 10000, 10
) AS b ON a.id = b.id;
实现原理:
- 第一步:通过索引快速获取主键列表。
- 第二步:利用主键关联主表,查询完整数据。
优点:
- 避免对大表进行全表扫描。
- 分步查询提高效率。
方案四:使用缓存结果集
对于热点数据或不频繁变化的数据,可以将分页结果缓存到 Redis 等缓存系统中,减少数据库压力。
实现步骤:
- 分页查询时写入缓存:
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
- Redis 缓存键设计:
key: articles:page:10000
value: [json_array_of_data]
- 读取缓存:
data = redis.get('articles:page:10000')
if not data:
# 缓存未命中,从数据库查询
优点:
- 缓存热点分页数据,提升查询速度。
- 减少数据库查询压力。
方案五:前端分页与限制深度
对于非必要场景,前端可以设计 滑动加载 机制,逐页请求数据,避免用户直接跳转到深度分页。
方案对比与总结
| 方案 | 适用场景 | 优点 | 缺点 |
|---|---|---|---|
| 子查询优化 | 深度分页查询 | 快速定位跳过的数据行 | 子查询设计较复杂 |
| 覆盖索引 | 查询列较少 | 避免回表,性能显著提升 | 需要额外维护索引 |
| 延迟关联优化 | 主键索引可用 | 降低扫描数据量 | 需分步查询,增加代码复杂度 |
| 缓存结果集 | 热点数据或低频查询 | 查询速度极快 | 数据一致性问题,需更新缓存 |
| 前端限制与优化 | 用户体验优先 | 避免不必要的深度分页 | 非通用,需前后端配合 |
测试用例
我们可以通过 MySQL 查询耗时对比来验证深度分页优化效果。
基准测试代码:
-- 原始分页查询
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
-- 子查询优化
SELECT *
FROM articles
WHERE id >= (SELECT id FROM articles ORDER BY created_at DESC LIMIT 10000, 1)
ORDER BY created_at DESC
LIMIT 10;
-- 延迟关联优化
SELECT a.*
FROM articles a
JOIN (
SELECT id FROM articles ORDER BY created_at DESC LIMIT 10000, 10
) AS b ON a.id = b.id;
小结
通过本文的学习,我们了解了 MySQL 深度分页的性能瓶颈及优化方法,包括 子查询优化、覆盖索引 和 延迟关联 等策略。这些方法可以根据实际业务场景灵活应用,既提升查询性能,又确保数据准确性。
总结
深度分页问题是数据库优化中的常见挑战,但并非无解。只要我们合理设计索引、调整查询逻辑、利用缓存机制,并在业务层进行适当的限制,就能有效解决深度分页的性能问题。
让我们把这些技巧运用到实际项目中,迎接大数据量场景的挑战吧!
… …
文末
好啦,以上就是我这期的全部内容,如果有任何疑问,欢迎下方留言哦,咱们下期见。
… …
学习不分先后,知识不分多少;事无巨细,当以虚心求教;三人行,必有我师焉!!!
wished for you successed !!!
⭐️若喜欢我,就请关注我叭。
⭐️若对您有用,就请点赞叭。
⭐️若有疑问,就请评论留言告诉我叭。
版权声明:本文由作者原创,转载请注明出处,谢谢支持!
178

被折叠的 条评论
为什么被折叠?



