MySQL深度分页优化实战指南

开篇语

哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云/阿里云/华为云/51CTO;欢迎大家常来逛逛

  今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。

  我是一名后端开发爱好者,工作日常接触到最多的就是Java语言啦,所以我都尽量抽业余时间把自己所学到所会的,通过文章的形式进行输出,希望以这种方式帮助到更多的初学者或者想入门的小伙伴们,同时也能对自己的技术进行沉淀,加以复盘,查缺补漏。

小伙伴们在批阅的过程中,如果觉得文章不错,欢迎点赞、收藏、关注哦。三连即是对作者我写作道路上最好的鼓励与支持!

前言

在上一期中,我们聊到了如何通过合理设计索引和查询优化器提升 MySQL 查询性能。但在实际开发中,当数据量逐渐庞大,进行深度分页查询时,数据库性能瓶颈就会显现出来。深度分页,尤其是 LIMIT m, n 这样的查询,当 m 值较大时,会导致数据库查询时间急剧上升。今天,我们将深入探讨如何优化 MySQL 的 深度分页查询,以高效应对大数据量场景。


摘要

本文主要介绍 MySQL 深度分页导致性能问题的原因,并提出几种常见的优化策略,包括:子查询优化覆盖索引优化延迟关联优化缓存结果集 等方法。通过这些策略,可以有效减少深度分页查询的性能开销,提高数据库响应速度。


深度分页性能问题分析

1. 问题背景

分页查询在 MySQL 中通常通过 LIMIT 子句实现,例如:

SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
  • 这里 LIMIT 10000, 10 表示跳过前 10000 条数据,从第 10001 条开始取 10 条数据。
  • m 值增大时,MySQL 会先扫描并丢弃前 m 条记录,再返回后续记录,导致性能急剧下降。

2. 问题根源

  • 数据量大:跳过的记录无法利用索引直接定位,需要逐行扫描。
  • 排序代价高ORDER BY 会先对数据进行排序,然后再进行分页。

深度分页优化方案

方案一:子查询优化(基于主键定位)

核心思路是利用子查询的主键索引,先定位起始数据行的主键,再进行数据查询。

优化前:
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
优化后:
SELECT * 
FROM articles 
WHERE id >= (SELECT id FROM articles ORDER BY created_at DESC LIMIT 10000, 1)
ORDER BY created_at DESC 
LIMIT 10;
实现原理:
  • 子查询快速找到跳过数据的 起始行 主键。
  • 外层查询基于主键进行检索,性能显著提升。
优点:
  • 避免扫描大量无用数据行。
  • 高效利用主键索引。

方案二:覆盖索引优化

覆盖索引是一种 索引列包含所有查询列 的场景,可以避免回表查询,提高性能。

优化前:
SELECT id, title, created_at 
FROM articles 
ORDER BY created_at DESC 
LIMIT 10000, 10;
覆盖索引设计:
ALTER TABLE articles ADD INDEX idx_created_at (created_at, id, title);
优化后:
SELECT id, title, created_at 
FROM articles FORCE INDEX(idx_created_at)
ORDER BY created_at DESC 
LIMIT 10000, 10;
实现原理:
  • 使用覆盖索引时,查询只在索引树上完成,避免回表查询。
  • FORCE INDEX 强制使用覆盖索引,提高查询效率。
优点:
  • 大幅减少 IO 操作。
  • 提升分页查询速度。

方案三:延迟关联优化

核心思路是先通过索引查询主键列表,再关联主表获取完整数据,减少扫描量。

优化前:
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
优化后:
SELECT a.*
FROM articles a
JOIN (
    SELECT id 
    FROM articles 
    ORDER BY created_at DESC 
    LIMIT 10000, 10
) AS b ON a.id = b.id;
实现原理:
  • 第一步:通过索引快速获取主键列表。
  • 第二步:利用主键关联主表,查询完整数据。
优点:
  • 避免对大表进行全表扫描。
  • 分步查询提高效率。

方案四:使用缓存结果集

对于热点数据或不频繁变化的数据,可以将分页结果缓存到 Redis 等缓存系统中,减少数据库压力。

实现步骤:
  1. 分页查询时写入缓存
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;
  1. Redis 缓存键设计
key: articles:page:10000
value: [json_array_of_data]
  1. 读取缓存
data = redis.get('articles:page:10000')
if not data:
    # 缓存未命中,从数据库查询
优点:
  • 缓存热点分页数据,提升查询速度。
  • 减少数据库查询压力。

方案五:前端分页与限制深度

对于非必要场景,前端可以设计 滑动加载 机制,逐页请求数据,避免用户直接跳转到深度分页。


方案对比与总结

方案适用场景优点缺点
子查询优化深度分页查询快速定位跳过的数据行子查询设计较复杂
覆盖索引查询列较少避免回表,性能显著提升需要额外维护索引
延迟关联优化主键索引可用降低扫描数据量需分步查询,增加代码复杂度
缓存结果集热点数据或低频查询查询速度极快数据一致性问题,需更新缓存
前端限制与优化用户体验优先避免不必要的深度分页非通用,需前后端配合

测试用例

我们可以通过 MySQL 查询耗时对比来验证深度分页优化效果。

基准测试代码:

-- 原始分页查询
SELECT * FROM articles ORDER BY created_at DESC LIMIT 10000, 10;

-- 子查询优化
SELECT * 
FROM articles 
WHERE id >= (SELECT id FROM articles ORDER BY created_at DESC LIMIT 10000, 1)
ORDER BY created_at DESC 
LIMIT 10;

-- 延迟关联优化
SELECT a.* 
FROM articles a 
JOIN (
    SELECT id FROM articles ORDER BY created_at DESC LIMIT 10000, 10
) AS b ON a.id = b.id;

小结

通过本文的学习,我们了解了 MySQL 深度分页的性能瓶颈及优化方法,包括 子查询优化覆盖索引延迟关联 等策略。这些方法可以根据实际业务场景灵活应用,既提升查询性能,又确保数据准确性。


总结

深度分页问题是数据库优化中的常见挑战,但并非无解。只要我们合理设计索引、调整查询逻辑、利用缓存机制,并在业务层进行适当的限制,就能有效解决深度分页的性能问题。

让我们把这些技巧运用到实际项目中,迎接大数据量场景的挑战吧!

… …

文末

好啦,以上就是我这期的全部内容,如果有任何疑问,欢迎下方留言哦,咱们下期见。

… …

学习不分先后,知识不分多少;事无巨细,当以虚心求教;三人行,必有我师焉!!!

wished for you successed !!!


⭐️若喜欢我,就请关注我叭。

⭐️若对您有用,就请点赞叭。
⭐️若有疑问,就请评论留言告诉我叭。


版权声明:本文由作者原创,转载请注明出处,谢谢支持!

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值