💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
PSO-BP粒子群算法是一种结合了粒子群优化算法和BP神经网络的算法,它可以用于优化BP网络的权重和偏置,从而提高BP网络的预测性能。
在多维回归预测问题中,PSO-BP算法可以通过以下步骤进行优化:
1. 初始化粒子群的位置和速度,每个粒子代表了一个BP网络的权重和偏置。
2. 计算每个粒子的适应度,即使用BP网络对训练数据进行预测,并计算预测误差。
3. 更新粒子的速度和位置,根据粒子群算法的更新规则,将粒子的位置和速度进行调整,使得适应度函数值更优。
4. 重复步骤2和步骤3,直到达到设定的迭代次数或者粒子的适应度达到一定的阈值。
通过以上步骤,PSO-BP算法可以有效地优化BP网络的权重和偏置,从而提高BP网络在多维回归预测问题中的性能。这种算法结合了粒子群算法的全局搜索能力和BP网络的优化能力,能够更好地应对多维回归预测问题中的复杂性和高维特征。
📚2 运行结果








🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]穆永欢,邱波,魏诗雅,等.基于粒子群优化算法的测光红移回归预测[J].光谱学与光谱分析, 2019, 39(9):5.DOI:CNKI:SUN:GUAN.0.2019-09-007.
[2]李彤,张奇志.基于PSO-BP的神经网络卡钻事故预测研究[J].长江信息通信, 2021(2):3.

149

被折叠的 条评论
为什么被折叠?



