【多变量输入单步预测】基于蜣螂优化算法(DBO)优化CNN-BiLSTM-Attention的风电功率预测研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、研究方法

1. 模型组成

2. 研究步骤

三、研究成果与应用前景

四、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于蜣螂优化算法(DBO)优化CNN-BiLSTM-Attention的风电功率预测研究是一个结合了先进优化技术和深度学习模型的课题,旨在提高风电功率预测的准确性与效率。以下是对该研究的详细分析:

一、研究背景与意义

风电作为一种重要的可再生能源,其功率输出受多种因素影响,如风速、气温、气压等,具有高度的不确定性。准确预测风电功率对于电力系统的调度、规划和运行至关重要,可以有效提高能源利用效率,减少化石能源依赖。然而,传统的统计方法和单一的机器学习模型难以全面捕捉风能的复杂性,因此,开发高效、准确的预测模型成为迫切需求。

二、研究方法

1. 蜣螂优化算法(DBO)

蜣螂优化算法(Dung Beetle Optimization Algorithm)是一种生物启发式优化算法,它模仿了蜣螂(俗称屎壳郎)在自然界中滚动粪球的行为,通过寻找最适宜的地点来埋藏粪球的过程来模拟解决问题的搜索过程。DBO因其高效、灵活和全局搜索能力而被应用于各种优化问题中,包括参数优化、路径规划等。在本研究中,DBO被用于优化CNN-BiLSTM-Attention模型的参数,以提高模型的预测性能。

2. CNN-BiLSTM-Attention模型
  • 卷积神经网络(CNN):擅长处理具有网格结构的数据(如图像),通过学习局部特征并进行层次化抽象,能够有效提取输入数据中的复杂特征。在风电功率预测中,CNN可以自动学习风速、气温等气象数据的空间特征。
  • 双向长短期记忆网络(BiLSTM):是一种特殊的循环神经网络(RNN),能够在时间序列的正向和反向同时处理数据,从而捕捉序列数据中的前后依赖关系。这对于风电功率预测中考虑历史数据对未来功率的影响具有重要意义。
  • 注意力机制(Attention):允许模型在处理序列数据时,根据当前任务的需要有选择地关注输入序列的不同部分,从而提高模型的聚焦能力和预测性能。在风电功率预测中,注意力机制可以帮助模型更加关注对预测结果影响较大的因素。

三、研究步骤

  1. 数据预处理:收集风电场的气象数据(如风速、气温、气压等)和功率输出数据,并进行清洗、归一化等预处理操作。
  2. 模型构建:构建CNN-BiLSTM-Attention模型,并设置模型的初始参数。
  3. 参数优化:利用蜣螂优化算法(DBO)对CNN-BiLSTM-Attention模型的参数进行优化,包括学习率、隐藏层节点数、正则化系数等。
  4. 模型训练:使用优化后的参数对模型进行训练,并通过交叉验证等方法评估模型的性能。
  5. 结果分析:对模型的预测结果进行分析,包括计算误差指标(如MAE、RMSE、MAPE等)、绘制预测效果对比图等。

四、预期成果

通过基于蜣螂优化算法(DBO)优化CNN-BiLSTM-Attention模型的风电功率预测研究,预期能够显著提高风电功率预测的准确性和效率。这对于电力系统的调度、规划和运行具有重要意义,有助于推动可再生能源的有效利用和智能电网的发展。

五、结论与展望

本研究结合了先进优化技术和深度学习模型的优势,提出了一种新的风电功率预测方法。未来,随着算法的不断优化和计算能力的提升,该模型有望在风电及其他可再生能源预测领域得到更广泛的应用。同时,也可以进一步探索其他优化算法和深度学习模型在风电功率预测中的应用潜力。

📚2 运行结果

采用前10个样本的所有特征,去预测下一个样本的发电功率。

部分代码:


layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    bilstmLayer(25,'Outputmode','last','name','hidden1') 
    selfAttentionLayer(1,2)          %创建一个单头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]王彦快,孟佳东,张玉,等.基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究[J].铁道科学与工程学报, 2024, 21(7).

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011, 35(12):20-26.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值