基于CNN-BiLSTM-Attention的共享单车租赁预测研究(数据可换)(Python代码实现)

               💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、模型构建与原理

1. 数据预处理

2. CNN-BiLSTM-Attention模型构建

3. 融合与输出

三、模型训练与优化

四、研究应用与展望

1. 应用场景

2. 研究展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-BiLSTM-Attention的共享单车租赁预测研究是一个结合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)以及注意力机制(Attention)的深度学习模型,旨在提高共享单车租赁数量的预测准确性和稳定性。以下是对该研究的详细分析:

一、研究背景与意义

随着共享单车的普及和市场竞争的加剧,准确预测共享单车租赁数量对于共享单车企业优化资源配置、提高运营效率具有重要意义。传统的预测方法往往难以捕捉影响租赁数量的多种因素及其之间的复杂关系,而深度学习技术的引入为解决这一问题提供了新的思路。

二、模型构建与原理

1. 数据预处理
  • 数据收集:收集共享单车租赁系统的历史数据,包括租赁数量、时间信息(如日期、小时)、天气状况(如温度、湿度、风速等)、地理位置等。
  • 数据清洗:去除异常值、缺失值等,确保数据的完整性和准确性。
  • 特征工程:根据业务需求和数据特点,提取并转换有用的特征。例如,对于分类特征(如天气状况、节假日等),可以采用one-hot编码;对于连续特征(如温度、湿度、时间等),则进行归一化处理或时间编码。
2. CNN-BiLSTM-Attention模型构建
  • CNN部分:负责提取输入数据中的空间特征,如天气状况、地理位置等对租赁数量的影响。通过卷积层和池化层的堆叠,CNN能够捕捉数据中的局部特征和空间相关性。
  • BiLSTM部分:负责处理时序数据,捕捉数据中的长期依赖关系。BiLSTM通过前向和后向两个方向的LSTM单元,能够同时考虑过去和未来的信息,从而更全面地理解数据的时序特性。
  • Attention机制:在BiLSTM的输出上引入注意力机制,使得模型能够根据不同时间点的信息对预测结果的重要性进行动态调整。这样,模型可以更加关注对预测结果影响较大的时间段或特征,提高预测的准确性和鲁棒性。
3. 融合与输出

将CNN提取的空间特征、BiLSTM处理的时序特征以及Attention机制的权重进行融合,通过全连接层得到最终的共享单车租赁数量预测值。

三、模型训练与优化

  • 损失函数:选择合适的损失函数(如均方误差MSE、平均绝对误差MAE等)来衡量预测结果与实际值之间的差异。
  • 优化算法:使用梯度下降法或其变种(如Adam优化器)来优化模型参数,最小化损失函数。
  • 超参数调优:通过交叉验证等方法调整CNN和BiLSTM的层数、卷积核大小、LSTM单元数量、学习率等超参数,以提高模型性能。
  • 正则化技术:为防止过拟合,可以采用L1/L2正则化、Dropout等技术。

四、研究应用与展望

1. 应用场景
  • 实时预测与调度:将预测模型与实时监控系统相结合,实现共享单车租赁数量的实时预测和动态调度,优化车辆分配,提高运营效率。
  • 运营决策支持:为共享单车企业的运营决策提供数据支持,如制定营销策略、调整租金价格等。
  • 城市规划:为城市规划者提供共享单车租赁系统的使用情况数据,为制定自行车相关基础设施和政策提供参考。
2. 研究展望
  • 多源数据融合:引入更多数据源(如交通流量、人口迁移、社交媒体数据等),提高预测的准确性和全面性。
  • 模型融合:结合其他深度学习模型(如Transformer等)的优点,构建混合模型以提高预测性能。
  • 可解释性研究:加强对CNN-BiLSTM-Attention模型预测结果的可解释性研究,提高模型的透明度和可信度,便于企业和用户理解和接受预测结果。

综上所述,基于CNN-BiLSTM-Attention的共享单车租赁预测研究通过融合多种深度学习技术的优点,实现了对共享单车租赁数量的精准预测。未来随着技术的不断发展和数据的不断积累,该领域的研究将更加深入和广泛。

📚2 运行结果

部分代码:

def evaluate_forecasts(Ytest, predicted_data, n_out):
    # 定义一个函数来评估预测的性能。
    mse_dic = []
    rmse_dic = []
    mae_dic = []
    mape_dic = []
    r2_dic = []
    # 初始化存储各个评估指标的字典。
    table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
    for i in range(n_out):
        # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
        actual = [float(row[i]) for row in Ytest]  #一列列提取
        # 从测试集中提取实际值。
        predicted = [float(row[i]) for row in predicted_data]
        # 从预测结果中提取预测值。
        mse = mean_squared_error(actual, predicted)
        # 计算均方误差(MSE)。
        mse_dic.append(mse)
        rmse = sqrt(mean_squared_error(actual, predicted))
        # 计算均方根误差(RMSE)。
        rmse_dic.append(rmse)
        mae = mean_absolute_error(actual, predicted)
        # 计算平均绝对误差(MAE)。
        mae_dic.append(mae)
        MApe = mape(actual, predicted)
        # 计算平均绝对百分比误差(MAPE)。
        mape_dic.append(MApe)
        r2 = r2_score(actual, predicted)
        # 计算R平方值(R2)。
        r2_dic.append(r2)
        if n_out == 1:
            strr = '预测结果指标:'
        else:
            strr = '第'+ str(i + 1)+'步预测结果指标:'
        table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.

[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.

[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.

[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

CNN-BiLSTM-Attention模型是一个结合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的深度学习模型,通常用于处理序列数据,特别是在自然语言处理(NLP)和图像识别领域有广泛应用。在图片预测任务中,这个模型可以通过以下方式结合使用: 1. **卷积神经网络(CNN)**:CNN是处理图像数据的常用架构,它能够从图像中提取空间层次的特征。在图片预测任务中,CNN可以用来提取图片的局部特征,如边缘、纹理等。 2. **双向长短期记忆网络(BiLSTM)**:BiLSTM是一种能够处理序列数据的递归神经网络(RNN),它能够捕捉序列数据的时间依赖性。在图像预测中,BiLSTM可以用来处理一维的特征序列,例如按行或列扫描图像得到的特征序列。 3. **注意力机制(Attention)**:注意力机制允许模型在处理输入序列时,对不同部分的输入赋予不同的权重,从而更关注于重要的信息。在图片预测中,注意力机制有助于模型集中处理图像中的关键区域。 将这三个组件结合在一起,可以构建一个强大的模型来执行图像预测任务。首先,CNN负责提取图像特征,然后BiLSTM处理这些特征的序列,最后通过注意力机制模型能够聚焦于图像中的关键区域。 使用Python进行开发时,常见的深度学习框架如TensorFlow和Keras提供了构建此类模型所需的组件和接口。以下是一个简化的实现示例: ```python from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, Reshape, Dense, LSTM, Bidirectional, Concatenate, Attention # 假设输入图像大小为224x224x3 input_img = Input(shape=(224, 224, 3)) # CNN部分 conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_img) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) # 将CNN的输出转换为适合RNN处理的形状 reshaped = Reshape(target_shape=((224//4)*(224//4), 128))(pool2) # BiLSTM部分 blstm = Bidirectional(LSTM(64, return_sequences=True))(reshaped) # 注意力机制部分 attention = Attention()([blstm, blstm]) # 全连接层和输出层 dense = Dense(64, activation='relu')(attention) output = Dense(1, activation='sigmoid')(dense) # 构建模型 model = Model(inputs=input_img, outputs=output) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 模型概览 model.summary() # 训练模型等步骤... ``` 请注意,上述代码仅为示例,实际应用中需要根据具体任务对模型结构和参数进行调整,例如在图像的大小、卷积层和全连接层的神经元数量等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值