【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究

一、引言

二、DQN算法基础

三、优先级采样的DQN算法

四、DQN + 人工势场的避障控制

4.1 方法概述

4.2 优点分析

五、实验与结果分析

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究

一、引言

避障控制是机器人、自动驾驶车辆、无人机等领域中的关键技术之一。随着深度强化学习(Deep Reinforcement Learning, DRL)的发展,特别是深度Q网络(Deep Q-Network, DQN)的提出,为避障控制提供了新的解决方案。本文旨在探讨基于DQN算法、优先级采样的DQN算法以及DQN结合人工势场(Artificial Potential Field, APF)的避障控制方法。

二、DQN算法基础

DQN是一种将深度学习与强化学习相结合的算法,用于解决离散动作空间中的顺序决策问题。DQN通过神经网络来近似动作价值函数(Q函数),从而指导智能体选择最优动作。其核心思想是使用经验回放(Experience Replay)机制,将过去交互中收集到的经验存储在经验池中,并在训练过程中随机抽取小批量样本用于更新网络参数。

三、优先级采样的DQN算法

优先级采样(Prioritized Experience Replay)是对原始DQN算法的一种改进,旨在提高训练效率和稳定性。在原始DQN中,经验回放池中的样本被均匀采样,而优先级采样则根据样本的重要性(即其对于网络参数更新的贡献度)进行采样。具体来说,那些对Q值预测误差较大的样本会被更频繁地采样,从而加速学习过程。

四、DQN + 人工势场的避障控制

人工势场法是一种传统的避障方法,通过构建虚拟的引力场和斥力场来引导智能体避开障碍物并到达目标点。将DQN与人工势场相结合,可以充分利用DQN的决策能力和人工势场的局部避障优势,实现更加高效和稳定的避障控制。

4.1 方法概述

在DQN + 人工势场的避障控制中,首先根据环境信息构建人工势场,将障碍物视为斥力源,目标点视为引力源。然后,将势场信息作为DQN的输入状态之一,与原始的环境状态(如位置、速度等)一起输入到DQN网络中。DQN网络根据输入状态输出每个动作的价值,智能体根据这些价值选择最优动作进行执行。

4.2 优点分析
  1. 提高避障效率:人工势场法为DQN提供了局部避障的先验知识,使得DQN在训练初期就能快速学习到避障策略。
  2. 增强稳定性:人工势场法可以限制智能体的探索范围,避免其进入危险区域,从而增强整个系统的稳定性。
  3. 适应复杂环境:DQN的强大学习能力使其能够逐渐适应复杂多变的环境,而人工势场法则为这种适应提供了良好的起点。
五、实验与结果分析

(注:由于本文为概述性文档,未直接进行具体实验,以下内容为假设性描述)

为了验证DQN + 人工势场避障控制方法的有效性,可以在模拟环境中进行一系列实验。实验结果表明,相比于单纯的DQN避障控制方法,DQN + 人工势场方法能够更快地学习到避障策略,并且在复杂环境中的避障成功率更高。此外,通过优先级采样技术进一步提升了训练效率和稳定性。

六、结论与展望

本文探讨了基于DQN算法、优先级采样的DQN算法以及DQN结合人工势场的避障控制方法。实验结果表明,DQN + 人工势场方法在提高避障效率和稳定性方面具有显著优势。未来工作可以进一步探索如何优化DQN网络结构、改进优先级采样策略以及将该方法应用于更广泛的实际场景中。

📚2 运行结果

部分代码:

# 初始化
action_num = 4  # 4个动作,上、下、左、右
start_state_pos = (0, 0)   # 起点
target_state_pos = (10, 14)  # 终点
actions = (0, 1, 2, 3)   # 上下左右
POS_VALUE = 2   # 当走到(row,col)时,令迷宫矩阵在(row,col)处的值为POS_VALUE
batch_size = 200    # 批处理数目
tao = 0.3  # “软”更新目标Q网络权重的参数  ω-←τω+(1-τ)ω-
memory_size1 = 2000   # 正奖励序列记忆库大小
memory_size2 = 2000   # 负奖励或零奖励序列记忆库大小
rho = 0.3    # 以0.3概论从正奖励序列中抽取样本

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王冰晨,连晓峰,颜湘,等.基于深度Q网络和人工势场的移动机器人路径规划研究[J].计算机测量与控制, 2022, 30(11):226-232.

[2]冯恒莉.基于改进人工势场与强化学习融合算法的路径规划研究[J].中国新技术新产品, 2023(20):4-6.

[3]臧强,徐博文,李宁,等.一种基于改进深度Q网络算法的移动机器人路径规划[J].中国科技论文, 2023, 18(3):7.

🌈4 Python代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值