目录
1、从集合中加载数据源
使用 fromCollection() 方法将数据放入list中作为Flink的数据源
方式一:
def main(args: Array[String]): Unit = {
// 创建flink环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
// 设置并行度
env.setParallelism(2)
var dataList = List(
1,2,3,4,5,21,12,3445,65
)
// 加载数据源1 source 方式一
val stream1: DataStream[Int] = env.fromCollection(dataList)
// 控制台输出sink
stream1.print()
env.execute("source stu")
}
}
控制台输出:

方式二:
创建样例类,使用 fromCollection() 方法将数据放入Seq序列中作为Flink的数据源
case class SensorReading(id:String,timestamp:Long,temperature:Double)
object SourceTest {
def main(args: Array[String]): Unit = {
// 创建flink环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
// 设置并行度
env.setParallelism(2)
var dataList2 = List(
SensorReading("sensor_1",1665103420,38.1),
SensorReading("sensor_4",1665103420,31.2),
SensorReading("sensor_7",1665103420,15.4),
SensorReading("sensor_9",1665103420,25.8)
)
// 加载数据源1
val stream1: DataStream[SensorReading] = env.fromCollection(dataList2)
// 控制台输出sink
stream1.print()
env

本文详细介绍了使用Scala进行Flink数据源加载的五种方式,包括从集合、文件、Kafka、监控窗口及自定义数据源的加载,并提供了相应的控制台输出示例。
最低0.47元/天 解锁文章
900

被折叠的 条评论
为什么被折叠?



