最近经常收到小伙伴们的留言:做数据分析要精通Python吗?今天们就来好好盘一盘这个话题。
0基础想入门的小伙伴,如果你决定学习数据分析,却没有编程经验,那么这篇内容会非常适合你,让你的困惑得以解决。
做数据分析要精通Python吗?
要学习数据分析,Excel、SQL、Python是我们必须学习使用的工具。而对于没有编程基础的初学者来说,在一听到要学习编程语言时,可能会产生这样的疑惑:难道入门数据分析还得先成为一名软件开发人员吗?
当然不是。
很多人对用Python进行数据分析有这样的误解:我必须得精通Python编程才能做好数据分析。于是报了Python入门课程,买了若干本Python编程书籍,完成小的软件项目来学习Python……就这样过了三个月,码代码很快乐,但是你会发现,这样下去自己就要往Python开发人员方向走,而非Python数据分析人员。
事实上,完全没必要非常精通Python,你只需要在入门的基础上,学好4个数据分析的Python库即可解决数据分析问题。
Numpy:
Numpy是Python科学计算的基础包。它除了为Python提供快速的数组处理能力,还是在算法和库之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的 Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy 数组中的数据,无需进行任何数据复制工作。因此,许多Python的数值计算工具要么使用NumPy 数组作为主要的数据结构,要么可以与NumPy进行无缝交互操作。
Pandas:
Pandas提供了快速便捷处理结构化数据的大量数据结构和函数,兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,能更加便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。因为数据操作、准备、清洗是数据分析最重要的技能,所以Panda