一、前言
在小学五年级数学中,分数运算占据着至关重要的地位。传统的编程实现方式往往面临两个主要挑战:浮点数精度问题和运算结果标准化问题。当使用浮点数处理分数运算时,像1/3这样的简单分数会被转换为0.333333...的无限循环小数,这种精度丢失在需要精确计算的场景下(如考试系统、教学软件)将造成严重问题。
Python的fractions模块提供的Fraction类完美解决了这一难题。不同于浮点数的近似表示,Fraction类以分子分母的整数对形式精确存储分数值,支持所有基本算术运算并自动执行约分操作。例如
本文将深入解析Fraction类的使用方法,并演示如何结合随机数生成和图像处理技术,构建一个完整的分数四则运算试卷生成系统。
实验所需的库

- fractions 模块:提供了
Fraction类,用于处理分数及其运算。 - random 模块:用于生成随机整数和随机选择运算符,从而生成各种分数运算题目。
- PIL(Python Imaging Library):这里使用 Pillow 库,来进行图片创建、绘制文字以及保存图片,从而实现试卷的可视化。
环境配置及终端指令

或者也可以通过 pip 安装相关库:

二、Fraction 类使用方法详解
1. 使用两个整数创建分数

上述代码中,传入分子 16 和分母 -10,Fraction 会自动对分数进行约分和符号调整,结果为 Fraction(-8, 5)。这种方式是最直观的构造方法,适合我们手动设置分子和分母的情况。
2. 单参数形式
如果只提供一个参数,则默认分母为 1:

输出结果为 Fraction(123, 1),适合需要将整数转换为分数的场景。
3. 无参数形式
如果不提供任何参数,Fraction 默认创建 0/1 的分数对象:

4. 以字符串形式传入分数
通过字符串传入分数,可以让 Fraction 自动解析其中的数字和符号。例如:

5. 带空格与负号的分数字符串
Fraction 能够解析包含空格或负号的字符串,如:

6. 解析包含其它字符的字符串
如果字符串中混有其他不可见字符(如制表符、换行符),Fraction 会自动去除多余空白并解析数字。例如:

输出为 Fraction(1414213, 1000000),将浮点数转换为分数的形式。
7. 解析小数与负小数

8. 支持科学计数法

9. 使用浮点数创建分数
直接传入浮点数时,Fraction 会将其转换为最接近的分数表示,但这可能会引入浮点数本身的精度问题。例如:

这正是由于浮点数 1.1 无法精确表示而产生的误差。
11. 使用 Decimal 对象解决精度问题
为避免上述精度损失,可以使用 Decimal 模块创建高精度数字,然后传入 Fraction:

这样就能准确地表示 1.1 对应的分数,避免了浮点数误差问题。

584

被折叠的 条评论
为什么被折叠?



