【额外】kitti之ros可视化_学习笔记--第8课:tracking资料下载及2d侦测框绘制

学习这一部分时,对代码不太理解,主要是队pandas库里面的函数和类不太懂。

pandas主要的函数/类
Pandas 是 Python 中用于数据分析的一个强大库,它提供了丰富的函数和类以便于数据的导入、清洗、处理和可视化。下面是一些 Pandas 常用的函数/类:

Series:一维数组,类似于列表和字典的混合体。

DataFrame:二维表格,可以看成是 Series 的容器。

read_csv():从 CSV 文件中读取数据并创建 DataFrame。

head() 和 tail():默认显示 DataFrame 的前五行和后五行。

shape:返回 DataFrame 的行数和列数。

describe():返回 DataFrame 中每一列的统计信息,如最大值、最小值、均值等。

info():返回 DataFrame 的基本信息,如列名、非空值数量、数据类型等。

dropna():删除 DataFrame 中有缺失值的行或列。

fillna():用指定的值填充 DataFrame 中的缺失值。

groupby():按照某一列或多列将 DataFrame 分组,并对每个组进行相应的操作。

pivot_table():根据给定的行和列进行聚合,并返回一个透视表。

merge():将两个 DataFrame 按照某一列或多列进行合并。

apply():对 DataFrame 的每一行或每一列应用一个函数。

value_counts():统计 DataFrame 中某一列中每个值出现的次数。

loc 和 iloc:用于索引和选择 DataFrame 中的数据。
plot():绘制 DataFrame 中的数据,如折线图、柱状图等。

当创建 DataFrame 实例时,可以使用以下几种常见的方法:

  1. 从字典创建 DataFrame:
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, 30, 35, 20]}
df = pd.DataFrame(data)
  1. 从 NumPy 数组创建 DataFrame:
import pandas as pd
import numpy as np

data = np.array([['Alice', 25], ['Bob', 30], ['Charlie', 35], ['David', 20]])
df = pd.DataFrame(data, columns=['Name', 'Age'])
  1. 从 CSV 文件创建 DataFrame这次用到了这种
import pandas as pd

df = pd.read_csv('data.csv')
  1. 从 Excel 文件创建 DataFrame:
import pandas as pd

df = pd.read_excel('data.xlsx')
  1. 从 SQL 数据库创建 DataFrame:
import pandas as pd
import sqlite3

conn = sqlite3.connect('database.db')
query = "SELECT * FROM table_name"
df = pd.read_sql(query, conn)
  1. 从 JSON 数据创建 DataFrame:
import pandas as pd
import json

data = '{"Name": ["Alice", "Bob"], "Age": [25, 30]}'
json_data = json.loads(data)
df = pd.DataFrame(json_data)

这些是常见的创建 DataFrame 实例的方法。根据数据的来源和格式不同,可以选择适合的方法来创建 DataFrame 对象。无论使用哪种方法,都可以通过返回的 DataFrame 对象进行后续的数据处理和分析操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值