毕设&lun文一条龙
从选题到答辩-纯手写、全包含
维普/万方/知网/AI降重,查重不过重写
学长学姐口碑认证,欢迎咨询!
全包 选题 + 任务书 + 开题报告 + 文献 + 外文翻译 + 初稿 + 中期答辩 + 终稿 + 降重(维普+万方+知网+AI查重) + 修改 + 答辩讲解
欢迎咨询,免费选题评估!!!
长春电子科技学院学生毕业设计(论文)登记表
|
学院 |
信息工程学院 |
专业 |
班级 | ||||||
|
学生姓名 |
王子震 |
指导教师 | |||||||
|
设计(论文)起止日期 |
教研室主任 |
刘芳芳 | |||||||
|
题目名称(包括主要技术参数)及要求: 1.论文名称: 基于java的在线小说管理系统 2.技术参数: Java 8、Maven、SpringBoot、SpringMVC、Mybatis、Mysql、Redis 3.要求: 论文结构逻辑清晰,语言流畅,保证章节条理清晰,图标完备,格式规范,篇幅10000-15000。 | |||||||||
|
论文开题报告(设计方案论证) 应包括以下几方面的内容: 1、本课题研究的意义;2、调研(社会调查)情况总结;3、查阅文献资料情况(列出主要文献清单);4、拟采取的研究路线;5、进度安排。 1.本课题研究的意义: 基于 Java 的在线小说管理系统具有重要的研究意义。对于读者而言,它提供了便捷的阅读方式,使其能随时随地获取丰富多样的小说资源,并可根据自身习惯进行个性化设置。对于作者来说,该系统是作品广泛传播的平台,能提高知名度与影响力,同时可实时接收读者反馈,有助于提升作品质量。而对于管理者,系统便于高效管理小说资源,包括分类、编辑、审核及版权管理等,还能通过分析用户数据实现精准运营,了解用户需求并制定合适策略。 2.调研(社会调查)情况总结: 通过社会调查发现,在线小说管理系统受到广泛关注。读者期望系统能提供更优质的阅读体验,如更丰富的资源分类和更便捷的搜索功能。作者希望能更好地保护版权并获得更多推广机会。管理者则强调系统的稳定性和高效管理功能的重要性,包括对大量小说数据和用户信息的有效处理。同时,安全和隐私问题也是各方普遍关注的焦点,需要在系统设计和实现过程中给予充分重视。 3.查阅文献资料情况(列出主要文献清单): [1] Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems[J]. Rim Ben Ammar,Mohsen Ben Ammar,Abdelmajid Oualha. Renewable Energy,2024. [2] Small-scale solar pumping systems—present status and future prospects[J]. M. B. Aylward BSc CEng MICE,B. McNelis BSc. International Journal of Ambient Energy,2023. [3] 张一鸣.基于Java语言的基础编程平台设计[J].集成电路应用,2023,40(02):254-255. [4] 基于Java的在线考试系统设计与开发. 马惠强;曾宋贤;陈云生.现代信息科技,2024(12) [5] 胡金宇.基于Spring Boot和Vue框架的企业绩效考核系统设计与实现[D].湖北师范大学,2023. 4.拟采取的研究路线: 研究背景与意义综述→需求分析→系统设计(总体设计→数据库设计→模块设计)→技术选型→系统实现→测试(功能测试→性能测试)→优化→部署→论文撰写与成果总结 → 论文答辩与评审反馈 → 论文修改与完善提交 5.进度安排: 第一周:调研、收集材料,明确用户需求与系统功能。 第二周:进行文献调研,查阅相关研究文献,整理分析。 第三周:进行系统需求分析,确定系统功能与技术架构。 第四周:进行系统设计,包括数据库设计与UI设计。 第五周:开始系统开发,搭建开发环境,选择技术框架。 第六周至第八周:完成系统前后端模块的开发及单元测试。 第九周至第十周:进行系统整体测试,修复bug。 第十一周:整理项目代码和设计文档。 第十二周:完成论文初稿。 第十三周:深入研究论文主要内容,完成论文修订 第十四周:进行论文答辩准备,参加论文答辩,在系统中提交最终版论文。 | |||||||||
|
指导教师审阅意见: 年 月 日 |
A Review of Small-Scale Solar Photovoltaic Water Pumping Systems: Technologies, AI-Driven Forecasting, and Future Prospects
1. Introduction
Solar Photovoltaic (PV) Water Pumping Systems (WPS) have emerged as a sustainable solution for agricultural irrigation, rural water supply, and ecological restoration, particularly in off-grid regions. With the global shift toward renewable energy, small-scale PV-WPS has gained traction due to its low carbon footprint and independence from fossil fuels. Recent advancements in artificial intelligence (AI) and power electronics have further enhanced system efficiency and reliability, addressing long-standing challenges such as intermittent solar irradiance and partial shading. This review synthesizes key literature from 2023 to 2025, focusing on technological status, AI applications in power forecasting, and future development trends.
2. Current Status of Small-Scale PV-WPS Technologies
2.1 System Configuration and Key Components
A typical small-scale PV-WPS comprises PV modules, a maximum power point tracking (MPPT) controller, an inverter, a pump (e.g., brushless DC motors, BLDCM), and optional energy storage. Aylward and McNelis (2023) highlight that modern systems increasingly omit battery banks to reduce maintenance costs and complexity, relying instead on direct PV-to-pump power conversion. This design is particularly prevalent in agricultural applications where water storage (e.g., reservoirs) can offset diurnal solar variability.
2.2 Performance Optimization Under Practical Challenges
Partial Shading Conditions (PSCs) remain a critical bottleneck, as conventional MPPT algorithms like Perturb and Observe (P&O) fail to track maximum power points efficiently. Recent studies propose hybrid optimization techniques: for instance, the Botox Optimization Algorithm (BOA) integrated with P&O (BOPO) achieves 15-20% higher power harvest than modified Grey Wolf Optimization (MGWO) or Particle Swarm Optimization (PSO) under PSCs. Additionally, adaptive control systems, such as proportional-integral (PI) regulators with self-tuning parameters, improve DC-link voltage stability in distorted grid conditions, enhancing overall system resilience.
3. AI-Driven Photovoltaic Power Forecasting for PV-WPS
3.1 Forecasting Methodologies: Empirical vs. AI Approaches
Rim Ben Ammar et al. (2024) compare empirical models (e.g., regression analysis) and AI approaches for PV power forecasting in WPS. Empirical models, while computationally inexpensive, lack accuracy under variable weather conditions, with mean absolute errors (MAE) exceeding 12% in cloudy environments. In contrast, AI models leverage historical weather data (solar irradiance, temperature, cloud cover) to deliver precise predictions: Kumar and Goyal (2025) note that deep learning architectures like Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs) reduce MAE to 3-5% for short-term forecasting (1-6 hours).
3.2 Hybrid AI Algorithms for Enhanced Reliability
Hybrid AI systems further improve forecasting performance by combining complementary techniques. For example, LSTM integrated with Reinforcement Learning (RL) optimizes demand-response strategies, enabling near-real-time load balancing in PV-WPS. Similarly, CNN-Particle Swarm Optimization (CNN-PSO) hybrid models excel in processing spatial-temporal weather data, making them suitable for medium-term forecasting (1-7 days) critical for irrigation scheduling. These advancements directly translate to better water resource management: accurate power forecasts reduce pump downtime by 25-30% compared to non-AI systems.
4. Challenges and Future Prospects
4.1 Existing Barriers
Despite progress, three key challenges persist: (1) Cost Constraints: High upfront costs of PV modules and AI-driven control systems limit adoption in low-income regions; (2) Technical Limitations: Data privacy concerns and the need for specialized skills in AI model maintenance hinder scalability; (3) Infrastructure Gaps: Integration with existing grid systems remains complex, especially in remote areas with underdeveloped power networks.
4.2 Emerging Trends
Future development will focus on three fronts:
- Smart Integration: Light Storage Direct Flexibility (LSD-Flex) technology combines PV, energy storage, and DC transmission, reducing energy loss by 10-15% and extending system lifespan.
- Explainable AI (XAI): Transparent AI models will address trust issues in critical applications like agricultural irrigation, enabling farmers to interpret forecasting results and adjust water usage accordingly.
- Policy and Market Support: Subsidies for small-scale PV-WPS and training programs for local technicians, as seen in India and Africa, will drive global adoption.
5. Conclusion
Small-scale PV-WPS has evolved from basic direct-drive systems to intelligent, AI-optimized solutions capable of overcoming solar intermittency and PSCs. AI-driven power forecasting, in particular, has become a cornerstone of system efficiency, with hybrid models delivering unprecedented accuracy. While cost and infrastructure challenges remain, technological innovations like LSD-Flex and XAI, coupled with supportive policies, will accelerate the transition to sustainable water pumping. Future research should prioritize low-cost AI hardware and cross-regional knowledge sharing to unlock the full potential of PV-WPS in global water security.


被折叠的 条评论
为什么被折叠?



