【摘 要】在智能交通系统中,利用无人机基站可为车辆提供接入服务及广域覆盖。然而针对分布密集且动态性强的网联自动驾驶场景,动态节点智能交互频繁且须低时延以保证驾驶安全,如何动态部署无人机基站以满足网络的性能指标是一个关键问题。针对此问题,提出了基于车辆动态聚类的协作卸载策略,以降低车辆计算卸载时延,提升服务质量。首先,考虑车辆卸载请求及无人机基站的服务能力进行车簇的划分和匹配,并根据车辆位置的改变对车簇进行实时动态调整;然后,多无人机基站针对全域车辆的卸载请求基于遗传算法协作进行最优卸载决策及资源分配。仿真结果表明,与已有策略相比,所提策略可以有效降低计算卸载时延、提升服务质量。
【关键词】车联网;无人机基站;动态聚类;协作卸载
0 引言
在智能交通系统中,随着C-V2X(Cellular-Vehicle to Everything,蜂窝车联网)[1]等技术的不断发展,各类计算密集、低时延、高可靠的新型智能应用层出不穷,网联自动驾驶便是其典型场景之一[2]。网联自动驾驶需实时高效连通各类车辆、道路、RSU(Road Side Unit,路侧单元)等实体,实现路况实时准确感知、海量信息高效处理、安全行驶以及提供娱乐服务等[3-4],这些业务对网
本文提出一种基于车辆动态聚类的协作卸载策略,用于无人机辅助车联网,旨在降低计算卸载时延,提升服务质量。通过车辆动态聚类算法平衡负载,并使用遗传算法进行协作卸载决策,仿真结果显示该策略在任务成功率和时延优化方面优于其他算法。
订阅专栏 解锁全文
1738

被折叠的 条评论
为什么被折叠?



