深度学习好用模块分享1——差分卷积

TIP《Chen 等 - 2024 - DEA-Net Single Image Dehazing Based on Detail-Enhanced Convolution and Content-Guided Attention.pdf》

其中的DEConV模块,即细节增强卷积(大类属于差分卷积,Difference Convolution, DC)

在文末再找一个差分卷积,凑六个,换个名字,any direction detail convolution,然后想一下再论文里面怎么说,显得高大上一些

基于角度差异的像素差分卷积(APDC)
源自《PiDiNet:Pixel Difference Networks for Efficient Edge Detection》

在二维图像处理中,低频信息高频信息主要是从信号处理的角度来定义的,它们通常与图像的空间变化率(即像素值变化的快慢)有关。具体来说:

  1. 低频信息(Low-Frequency Information)

    • 指图像中变化缓慢的部分,即像素值在空间上变化较小的区域。
    • 主要包含图像的整体轮廓、光照、颜色分布、平滑区域等。
    • 例如,在一张人脸照片中,皮肤的大面积颜色分布属于低频信息。
    • 在频域(如傅里叶变换后)表现为靠近中心的低频分量
  2. 高频信息(High-Frequency Information)

    • 指图像中变化剧烈的部分,即像素值在空间上快速变化的区域。
    • 主要包含边缘、细节、纹理、噪声等
    • 例如,在一张人脸照片中,眼睛、嘴巴的边缘和发丝的细节属于高频信息。
    • 在频域中,远离中心的频率分量代表高频信息。

普通卷积关注低频信息,差分卷积关注高频信息

**差分卷积优点:**
1、光照不变性
2、细粒度更强
==3、边缘信息,纹理特征==

可以换个名字,再找一个差分卷积,组成六个,
叫==any direction detail convolution==

DEConv由以下五个并行的卷积层组成:

  1. Vanilla Convolution (VC):普通卷积层,用于提取低频信息(如光照、颜色分布)。

  2. Central Difference Convolution (CDC):中心差异卷积,计算中心像素与邻域像素的差异。

  3. Angular Difference Convolution (ADC):角度差异卷积,捕捉不同角度的梯度变化。

  4. Horizontal Difference Convolution (HDC):水平差异卷积,类似Sobel水平算子,提取水平梯度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值