TIP《Chen 等 - 2024 - DEA-Net Single Image Dehazing Based on Detail-Enhanced Convolution and Content-Guided Attention.pdf》
其中的DEConV模块,即细节增强卷积(大类属于差分卷积,Difference Convolution, DC)
在文末再找一个差分卷积,凑六个,换个名字,any direction detail convolution,然后想一下再论文里面怎么说,显得高大上一些
基于角度差异的像素差分卷积(APDC)
源自《PiDiNet:Pixel Difference Networks for Efficient Edge Detection》
在二维图像处理中,低频信息和高频信息主要是从信号处理的角度来定义的,它们通常与图像的空间变化率(即像素值变化的快慢)有关。具体来说:
-
低频信息(Low-Frequency Information)
- 指图像中变化缓慢的部分,即像素值在空间上变化较小的区域。
- 主要包含图像的整体轮廓、光照、颜色分布、平滑区域等。
- 例如,在一张人脸照片中,皮肤的大面积颜色分布属于低频信息。
- 在频域(如傅里叶变换后)表现为靠近中心的低频分量。
-
高频信息(High-Frequency Information)
- 指图像中变化剧烈的部分,即像素值在空间上快速变化的区域。
- 主要包含边缘、细节、纹理、噪声等。
- 例如,在一张人脸照片中,眼睛、嘴巴的边缘和发丝的细节属于高频信息。
- 在频域中,远离中心的频率分量代表高频信息。
普通卷积关注低频信息,差分卷积关注高频信息
**差分卷积优点:**
1、光照不变性
2、细粒度更强
==3、边缘信息,纹理特征==
可以换个名字,再找一个差分卷积,组成六个,
叫==any direction detail convolution==
DEConv由以下五个并行的卷积层组成:
-
Vanilla Convolution (VC):普通卷积层,用于提取低频信息(如光照、颜色分布)。
-
Central Difference Convolution (CDC):中心差异卷积,计算中心像素与邻域像素的差异。
-
Angular Difference Convolution (ADC):角度差异卷积,捕捉不同角度的梯度变化。
-
Horizontal Difference Convolution (HDC):水平差异卷积,类似Sobel水平算子,提取水平梯度。

最低0.47元/天 解锁文章
8713

被折叠的 条评论
为什么被折叠?



